Advertisement

More Pieces of Ancient than Recent Theoretical Minimal Proto-tRNA-Like RNA Rings in Genes Coding for tRNA Synthetases

  • Jacques DemongeotEmail author
  • Hervé Seligmann
Original Article

Abstract

Theoretical minimal RNA rings were designed to mimick life’s primordial RNAs by forming stem-loop hairpins and coding once for each of the 20 amino acids, a start and a stop codon. At most 25 22-nucleotide long RNA rings follow these criteria. These align well with a consensus tRNA sequence, predicting for each RNA ring an anticodon and an associated cognate amino acid. Hypotheses on cognate amino acid order of inclusion in the genetic code produce evolutionary ranks for theoretical RNA rings. This evolutionary hypothesis predicts that pieces of RNA rings with more ancient cognate amino acid should be more frequent in modern genes than those from RNA rings with late cognate amino acids. Analyses of genes for tRNA synthetases, among the most ancient proteins, from archaeal, bacterial, eukaryote and viral superkingdoms overall confirm these predictions, least for tRNA synthetases with early cognate amino acids and for the neogene-enriched genome of the giant virus Tupanvirus. Hence early tRNA synthetase genes and late RNA rings evolved separately. Results indicate that RNA rings and tRNA synthetases with the same cognate amino acid are less separated for relatively recent cognate amino acids, suggesting that over evolutionary time the components of the molecular apparatus became more integrated, perhaps in cell-like membrane-bound systems. Results confirm that theoretical considerations in the design of minimal RNA rings recreated RNAs close to the actual primordial RNA population that produce genes by accretion, and confirm the hypothesis of homology of minimal RNA rings with tRNAs and their proto-tRNA status.

Keywords

Secondary structure Circular RNAs Nonribosomal translation tRNA ligase 

Notes

Acknowledgements

We thank two anonymous reviewers for highly valuable constructive comments.

References

  1. Abrahão J, Silva L, Silva LS, Khalil JYB, Rodrigues R, Arantes T, Assis F, Boratto P, Andrade M, Kroon EG, Ribeiro B, Bergier I, Seligmann H, Ghigo E, Colson P, Levasseur A, Kroemer G, Raoult D, La Scola B (2018) Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat Commun 9:749CrossRefGoogle Scholar
  2. Agmon I (2009) The dimeric proto-ribosome: structural details and possible implications on the origin of life. Int J Mol Sci 10:2921–2934CrossRefGoogle Scholar
  3. Almeida L, Demongeot J (2012) Predictive power of “a minima” models in biology. Acta Biotheor 60:3–19CrossRefGoogle Scholar
  4. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 125:3389–3402CrossRefGoogle Scholar
  5. Aziz MF, Caetano-Anolles K, Caetano-Anolles G (2016) The early history and emergence of molecular functions and modular scale-free network behavior. Sci Rep 6:25058CrossRefGoogle Scholar
  6. Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143:1838–1847CrossRefGoogle Scholar
  7. Barthélémy RM, Seligmann H (2016) Cryptic tRNAs in chaetognath mitochondrial genomes. Comput Biol Chem 62:119–132CrossRefGoogle Scholar
  8. Bartnik E, Borsuk P (1986) A glycine tRNA gene from lupine mitochondria. Nucleic Acids Res 14:2407CrossRefGoogle Scholar
  9. Bartonek L, Zagrovic B (2017) mRNA/protein sequence complementarity and its determinants: the impact of affinity scales. PLoS Comput Biol 13:e1005648CrossRefGoogle Scholar
  10. Bloch DP, McArthur B, Widdowson R, Spector D, Guimarães RC, Smith J (1983) tRNA-rRNA sequence homologies: evidence for a common evolutionary origin? J Mol Evol 19:420–428CrossRefGoogle Scholar
  11. Bloch DP, McArthur B, Widdowson R, Spector D, Guimarães RC, Smith J (1984) tRNA-rRNA sequence homologies: a model for the origin of a common ancestral molecule, and prospects for its reconstruction. Orig Life 14:571–578CrossRefGoogle Scholar
  12. Bloch DP, McArthur B, Guimarães RC, Smith J, Staves MP (1989) tRNA-rRNA sequence matches from inter- and intraspecies comparisons suggest common origins for the two RNAs. Braz J Med Biol Res 22:931–944Google Scholar
  13. Brown JR, Doolittle WF (1995) universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci USA 92:2441–2445CrossRefGoogle Scholar
  14. Caetano-Anollés D, Caetano-Anollés G (2016) Piecemeal buildup of the genetic code, ribosomes, genomes from primordial tRNA building blocks. Life (Basel) 6:e43Google Scholar
  15. Caetano-Anollés G, Nasir A (2012) Benefits of using molecular structure and abundance in phylogenomic analysis. Front Genet 3:172Google Scholar
  16. Caetano-Anollés G, Sun F-J (2014) The natural history of transfer RNA and its interactions with the ribosome. Front Genet 5:127Google Scholar
  17. Caetano-Anollés G, Mittenthal JE, Caetano-Anollés D, Kim KM (2014) A calibrated chronology of biochemistry reveals a stem line of descent responsible for planetary biodiversity. Front Genet 5:306Google Scholar
  18. Colson P, La Scola B, Raoult D (2017) Giant viruses of amoeba: a journey through innovative research and paradigm changes. Annu Rev Virol 4:48–61CrossRefGoogle Scholar
  19. Colson P, Levasseur A, La Scola B, Sharma V, Nasir A, Pontarotti P, Caetano-Anollés Raoult D (2018) Ancestrality and mosaicism of giant viruses supporting the definition of the fourth TRUC of microbes. Front Microbiol 9:2668CrossRefGoogle Scholar
  20. Demongeot J (1978) Sur la possibilité de considérer le code génétique comme un code à enchaînement. Rev Biomath 62:61–66Google Scholar
  21. Demongeot J, Besson J (1983) Genetic-code and cyclic codes. C R Acad des Sci III 296:807–810Google Scholar
  22. Demongeot J, Hazgui H (2016) The Poitiers school of mathematical and theoretical biology: Besson-Gavaudan-Schützenberger’s conjectures on genetic code and RNA structures. Acta Biotheor 64:403–426CrossRefGoogle Scholar
  23. Demongeot J, Moreira A (2007) A possible circular RNA at the origin of life. J Theor Biol 249:314–324CrossRefGoogle Scholar
  24. Demongeot J, Glade N, Moreira A (2008) Evolution and RNA relics. A systems biology view. Acta Biotheor 56:5–25CrossRefGoogle Scholar
  25. Dufton MJ (1997) Genetic code synonym quotas and amino acid complexity: cutting the cost of proteins? J Theor Biol 187:165–173CrossRefGoogle Scholar
  26. Eigen M, Winkler-Oswatitsch R (1981a) Tranfer-RNA: the early adaptor. Naturwissenschaften 68:217–228CrossRefGoogle Scholar
  27. Eigen M, Winkler-Oswatitsch R (1981b) Transfer-RNAS, and early gene? Naturwissenschaften 68:282–292CrossRefGoogle Scholar
  28. Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206CrossRefGoogle Scholar
  29. Faure R, Barthélémy RM (2018) True mitochondrial tRNA punctuation and initiation using overlapping stop and start codons at specific and conserved positions. In: Seligmann H (ed) Mitochondrial DNA. IntechOpen, London.  https://doi.org/10.5772/intechopen.75555 Google Scholar
  30. Faure E, Delaye L, Tribolo S, Levasseur A, Seligmann H, Barthélémy RM (2011) 2011 Probable presence of an ubiquitous cryptic mitochondrial gene on the antisense strand of the cytochrome oxidase I gene. Biol Direct 6:56CrossRefGoogle Scholar
  31. Fisher RA (1948) Questions and answers #14. Am Stat 2:30–31Google Scholar
  32. Geyer R, Madany MA (2018) On the efficiency of the genetic code after frameshift mutations. PeerJ 6:e4825CrossRefGoogle Scholar
  33. Guimarães RC (2011) Metabolic basis for the self-referential genetic code. Orig Life Evol Biosph 41:357–371CrossRefGoogle Scholar
  34. Guimarães RC (2014) Essentials in the life process indicated by the self-referential genetic code. Orig Life Evol Biosph 44:269–277CrossRefGoogle Scholar
  35. Guimarães RC (2015) The self-referential genetic code is biologic and includes the error minimization property. Orig Life Evol Biosph 45:69–75CrossRefGoogle Scholar
  36. Guimarães RC (2017) Self-referential encoding on modules of anticodon pairs—roots of the biological flow system. Life 7:16CrossRefGoogle Scholar
  37. Guimarães RC, Moreira CH, de Farias ST (2008) A self-referential model for the formation of the genetic code. Theory Biosci 127:249–270CrossRefGoogle Scholar
  38. Han DX, Wang HY, Ji ZL (2010) Amino acid homochirality may be linked to the origin of phosphate-based life. J Mol Evol 70:577–582CrossRefGoogle Scholar
  39. Hartman H (1995) Speculations on the origin and evolution of the genetic code. J Mol Evol 40:541–544CrossRefGoogle Scholar
  40. Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, Endy D, Salit M (2017) Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res 45:3615–3626CrossRefGoogle Scholar
  41. Hornos JEM, Hornos YMM (1993) Algebraic model for the evolution of the genetic code. Phys Rev Lett 71:4401–4404CrossRefGoogle Scholar
  42. Huang S, Yang B, Chen BJ, Bliim N, Ueberham U, Arendt T, Janitz M (2017) The emerging role of circular RNAs in transcriptome regulation. Genomics 109:401–407CrossRefGoogle Scholar
  43. Itzkovitz S, Alon U (2007) The genetic code is nearly optimal for allowing information within protein-coding sequences. Genome Res 17:405–412CrossRefGoogle Scholar
  44. Johnson DBF, Wang L (2010) Imprints of the genetic code in the ribosome. Proc Natl Acad Sci USA 107:8298–8303CrossRefGoogle Scholar
  45. Kim KM, Nasir A, Caetano-Anollés G (2014a) The importance of using realistic evolutionary models for retrodicting proteomes. Biochimie 99:129–137CrossRefGoogle Scholar
  46. Kim KM, Nasir A, Hwang K, Caetano-Anollés G (2014b) A tree of cellular life inferred from a genomic census of molecular functions. J Mol Evol 79:240–262CrossRefGoogle Scholar
  47. Kitada S, Uchiyama T, Funatsu T, Kitada Y, Ogishima T, Ito A (2007) A protein from a Parasitic Microorganism, Rickettsia prowazekii, can cleave the signal sequences of proteins targeting mitochondria. J Bacteriol 189:844–850CrossRefGoogle Scholar
  48. Koç I, Caetano-Anollés G (2017) The natural history of molecular functions inferred from an extensive phylogenomic analysis of gene ontology data. PLoS ONE 12:e0176129CrossRefGoogle Scholar
  49. Kumar B, Saini S (2016) Analysis of the optimality of the standard genetic code. Mol BioSystems 12:2642–2651CrossRefGoogle Scholar
  50. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RMA 20:1829–1842Google Scholar
  51. Legendre M, Fabre E, Poirot O, Jeudy S, Lartigue A, Alempic JM, Beucher L, Philippe N, Bertaux L, Christo-Foroux E, Labadie K, Couté Y, Abergel C, Claverie JM (2018) Diversity and evolution of the emerging Pandoraviridae family. Nat Commun 9:2285CrossRefGoogle Scholar
  52. Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandler O, Santini T, Andronache A, Wade M, Laneve P, Rajewsky N, Bozzoni I (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66:22–37CrossRefGoogle Scholar
  53. Michel CJ, Seligmann H (2014) Bijective transformation circular codes and nucleotide exchanging RNA transcription. Biosystems 118:39–50CrossRefGoogle Scholar
  54. Miller SL (1953) Production of amino acids under possible primitive earth conditions. Science 117:528–529CrossRefGoogle Scholar
  55. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130:245–251CrossRefGoogle Scholar
  56. Nagel GM, Doolittle RF (1991) Evolution and relatedness in two aminoacyl-tRNA synthetase families. Proc Natl Acad Sci USA 88:8121–8124CrossRefGoogle Scholar
  57. Nasir A, Caetano-Anollés G (2015) A phylogenomic data-driven exploration of viral origins and evolution. Sci Adv 1:e1500527CrossRefGoogle Scholar
  58. Nasir A, Kim KM, Caetano-Anollés G (2014) A phylogenomic census of molecular functions identifies modern thermophilic archaea as the most ancient form of cellular life. Archaea 2014:706468CrossRefGoogle Scholar
  59. Nasir A, Kim KM, Caetano-Anollés G (2017) Phylogenetic tracings of proteome size support gradual accretion of protein structural domains and the early origin of viruses from primordial cells. Front Microbiol 8:1178CrossRefGoogle Scholar
  60. Nelsestuen GL (1978) Amino-acid directed nucleic acid synthesis. A possible mechanism in the origin of life. J Mol Evol 11:109–120CrossRefGoogle Scholar
  61. Nicolet BP, Engels S, Aglialoro F, van den Akker E, von Lindern M, Wolkers MC (2018) Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res 46:8168–8180CrossRefGoogle Scholar
  62. Opuu V, Silvert M, Simonson T (2017) Computational design of fully overlapping coding schemes for protein pairs and triplets. Sci Rep 7:15873CrossRefGoogle Scholar
  63. Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S (2017) Translation of circRNA. Mol Cell 66:9–21CrossRefGoogle Scholar
  64. Pan T, Gutell RR, Uhlenbeck OC (1991) Folding of circularly permuted transfter RNAs. Science 254:1361–1364CrossRefGoogle Scholar
  65. Pelc SR (1965) Correlation between coding-triplets and amino acids. Nature 207:597–599CrossRefGoogle Scholar
  66. Pelc SR, Welton MGE (1966) Stereochemical relationship between coding triplets and amino-acids. Nature 209:868–870CrossRefGoogle Scholar
  67. Root-Bernstein M, Root-Bernstein R (2015) The ribosome as a missing link in the evolution of life. J Theor Biol 367:130–158CrossRefGoogle Scholar
  68. Root-Bernstein R, Root-Bernstein M (2016) The ribosome as a missing link in prebiotic evolution II: ribosomes encode ribosomal proteins that bind to common regions of their own mRNAs and rRNAs. J Theor Biol 397:115–127CrossRefGoogle Scholar
  69. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7:e30733CrossRefGoogle Scholar
  70. Schimmel P, Ribas De Pouplana L (2000) Footprints of aminoacyl-tRNA synthetases are everywhere. Trends Biochem Sci 25:207–209CrossRefGoogle Scholar
  71. Seligmann H (2011) Two genetic codes, one genome: frameshifted primate mitochondrial genes code for additional proteins in presence of antisense antitermination tRNAs. Biosystems 105:271–285CrossRefGoogle Scholar
  72. Seligmann H (2012a) An overlapping genetic code for frameshifted overlapping genes in Drosophila mitochondria: antisense antitermination tRNAs UAR insert serine. J Theor Biol 298:51–76CrossRefGoogle Scholar
  73. Seligmann H (2012b) Coding constraints modulate chemically spontaneous mutational replication gradients in mitochondrial genomes. Curr Genomics 13:37–54CrossRefGoogle Scholar
  74. Seligmann H (2012c) Overlapping genetic code for overlapping frameshifted genes in Testudines, and Lepidochelys olivacea as special case. Comput Biol Chem 41:18–34CrossRefGoogle Scholar
  75. Seligmann H (2012d) Positive and negative cognate amino acid bias affects compositions of aminoacyl-tRNA synthetases and reflects functional constraints on protein structure. BIO 2:11–26CrossRefGoogle Scholar
  76. Seligmann H (2015) Codon expansion and systematic transcriptional deletions produce tetra-, pentacoded mitochondrial peptides. J Theor Biol 387:154–165CrossRefGoogle Scholar
  77. Seligmann H (2016) Translation of mitochondrial swinger RNAs according to tri-, tetra- and pentacodons. Biosystems 140:38–48CrossRefGoogle Scholar
  78. Seligmann H (2018a) Directed mutations recode mitochondrial genes: from regular to stopless genetic codes. In: Seligmann H (ed) Mitochondrial DNA-new insights. IntechOpen, London.  https://doi.org/10.5772/intechopen.80871 CrossRefGoogle Scholar
  79. Seligmann H (2018b) Protein sequences recapitulate genetic code evolution. Comput Struct Biotechnol J 16:177–189CrossRefGoogle Scholar
  80. Seligmann H (2018c) Giant viruses as protein-coated mitochondria? Virus Res 253:77–86CrossRefGoogle Scholar
  81. Seligmann H, Raoult D (2016) Unifying view of stem-loop hairpin RNA as origin of current and ancient parasitic and non-parasitic RNAs, including in giant viruses. Curr Opin Microbiol 31:1–8CrossRefGoogle Scholar
  82. Seligmann H, Raoult D (2018) Stem-loop RNA hairpins in giant viruses: invading rRNA-like repeats and a template free RNA. Front Microbiol 9:101CrossRefGoogle Scholar
  83. Soma A, Onodera A, Sugahara J, Kanai A, Yachie N, Tomita M, Kawamura F, Sekine Y (2007) Permuted tRNA genes expressed via a circular RNA intermediate in Cyanidioschyzon merolae. Science 318:450–453CrossRefGoogle Scholar
  84. Trifonov EN (2000) Consensus temporal order of amino acids and evolution of the triplet code. Gene 261:139–151CrossRefGoogle Scholar
  85. Trifonov EN (2004) The triplet code from first principles. J Biomol Struct Dynamics 22:1–11CrossRefGoogle Scholar
  86. Wang M, Jiang YY, Kim KM, Qu G, Ji HF, Mittenthal JE, Zhang HY, Caetano-Anollés G (2011) A universal molecular clock of protein folds and its power in tracing the early history of aerobic metabolism and planet oxygenation. Mol Biol Evol 28:567–582CrossRefGoogle Scholar
  87. Wang X, Wang X, Chen G, Zhang J, Liu Y, Yang C (2015) The shiftability of protein coding genes: the genetic code was optimized for frameshift tolerating. PeerJ 3:e806v1Google Scholar
  88. Wang X, Dong Q, Chen G, Zhang J, Liu Y, Zhao J, Peng H, Wang Y, Cai Y, Wang X, Yang C, Lynch M (2016) The universal genetic code, protein coding genes and genomes of all species were optimized for frameshift tolerance. bioRxiv.  https://doi.org/10.1101/067736 Google Scholar
  89. Woese C (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742–8747CrossRefGoogle Scholar
  90. Wong JTF (1975) A co-evolution theory of the genetic code. Proc Natl Acad Sci USA 72:1909–1912CrossRefGoogle Scholar
  91. Wong JTF (2005) The coevolution hypothesis at age thirty. BioEssays 27:416–426CrossRefGoogle Scholar
  92. Yarus M (2017) The genetic code and RNA-amino acid affinities. Life (Basel) 7:13Google Scholar
  93. Yarus M, Christian EL (1989) Genetic code origins. Nature 342:349–350CrossRefGoogle Scholar
  94. Yarus M, Widmann JJ, Knight R (2009) RNA-amino acid binding: a stereochemical era for the genetic code. J Mol Evol 69:406–429CrossRefGoogle Scholar
  95. Zagrovic B, Bartonek L, Polyansky AA (2018) RNA-protein interactions in an unstructured context. FEBS Lett 592:2901–2916CrossRefGoogle Scholar
  96. Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L, Chen LL (2016) The biogenesis of nascent circular RNAs. Cell Rep 15:611–624CrossRefGoogle Scholar
  97. Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, Ren D, Ye X, Li C, Wang Y, Wei F, Guo C, Wu X, Li X, Li Y, Li G, Zeng Z, Xiong W (2018) Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer 17:79CrossRefGoogle Scholar
  98. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University Grenoble Alpes, Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis MedicalLa TroncheFrance
  2. 2.The National Natural History CollectionsThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations