Journal of Molecular Evolution

, Volume 86, Issue 3–4, pp 167–171 | Cite as

Primitive Dark-Phase Cycle of Photosynthesis at the Origin of Life

Letter to the Editor

Abstract

Simple phosphorylation, isomerization, and aldolisation reactions starting from glyceraldehyde have the potential to lead to the synthesis of pre-ribonucleotide polymers through a primitive form of the Calvin cycle (dark phase of photosynthesis) involving the unusual formation of phospho-nonulose phosphate and phospho-deculose phosphate, as key intermediates. These reactions involve activated phosphates which are generated from schreibersite minerals, geochemically available in Hadean times.

References

  1. Bryant DE, Kee TP (2006) Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-phosphinic acid from the Nantan meteorite. Chem Commun 22:2344–2346CrossRefGoogle Scholar
  2. Bryant DE, Greenfield D, Walshaw RD, Johnson BRG, Herschy B, Smith C, Pasek MA, Telford R, Scowen I, Munshi T, Edwards HGM, Cousins CR, Crawford IA, Kee TP (2013) Hydrothermal modification of the Sikhote-Alin iron meteorite under low pH geothermal environments. A plausibly prebiotic route to activated phosphorus on the early Earth. Geochim Cosmochim Acta 109:90–112CrossRefGoogle Scholar
  3. Burcar B, Pasek M, Gull M, Cafferty BJ, Velasco F, Hud NV, Menor-Salván C (2016) Darwin’s warm little pond: a one-pot reaction for prebiotic phosphorylation and the mobilization of phosphate from minerals in a urea-based solvent. Angew Chem Int Ed 55:13249–13253CrossRefGoogle Scholar
  4. Copley SD, Smith E, Morowitz HJ (2007) The origin of the RNA world: co-evolution of genes and metabolism. Bioorg Chem 35:430–443CrossRefPubMedGoogle Scholar
  5. Gull M, Mojica MA, Fernandez FM, Gaul DA, Orlando TM, Liotta CL, Pasek MA (2015) Nucleoside phosphorylation by the mineral schreibersite. Sci Rep 5:17198CrossRefPubMedPubMedCentralGoogle Scholar
  6. Gull M, Cafferty BJ, Hud NV, Pasek MA (2017) Silicate-promoted phosphorylation of glycerol in non-aqueous solvents: a prebiotically plausible route to organophosphates. Life 7:E29CrossRefPubMedGoogle Scholar
  7. Kee TP, Bryant DE, Herschy B, Marriott KE, Cosgrove NE, Pasek MA, Atlas ZD, Cousins CR (2013) Phosphate activation via reduced oxidation state phosphorus (P). Mild routes to condensed-p energy currency molecules. Life 3:386–402CrossRefPubMedPubMedCentralGoogle Scholar
  8. Keller MA, Turchyn AV, Ralser M (2014) Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean. Mol Syst Biol 10:725CrossRefPubMedPubMedCentralGoogle Scholar
  9. Keller MA, Zylstra A, Castro C, Turchyn AV, Griffin JL, Ralser M (2016) Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. Sci Adv 2:e1501235CrossRefPubMedPubMedCentralGoogle Scholar
  10. Koenig M (2015) Phosphoribosylphosphate and phosphoribosylnicotinate pairing with phosphoribosylamine at the origin of the RNA world. J Theor Biol 379:94–97CrossRefPubMedGoogle Scholar
  11. Messner CB, Driscoll PC, Piedrafita G, De Volder MFL, Ralser M (2017) Nonenzymatic gluconeogenesis-like formation of fructose 1,6-bisphosphate in ice. Proc Natl Acad Sci USA 114:7403–7407CrossRefPubMedPubMedCentralGoogle Scholar
  12. Muchowska KB, Varma SJ, Chevallot-Beroux E, Lethuillier-Karl L, Li G, Moran J (2017) Metals promote sequences of the reverse Krebs cycle. Nat Ecol Evol 1:1716–1721CrossRefPubMedPubMedCentralGoogle Scholar
  13. Osterberg R, Orgel LE, Lohrmann R (1973) Further studies of urea-catalyzed phosphorylation reactions. J Mol Evol 2:231–234CrossRefPubMedGoogle Scholar
  14. Pasek MA (2008) Rethinking early Earth phosphorus geochemistry. Proc Natl Acad Sci USA 105:853–858CrossRefPubMedPubMedCentralGoogle Scholar
  15. Pasek MA (2017) Schreibersite on the early Earth: scenarios for prebiotic phosphorylation. Geosci Front 8:329–335CrossRefGoogle Scholar
  16. Pasek MA, Lauretta DS (2005) Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 5:515–535CrossRefPubMedGoogle Scholar
  17. Pasek MA, Dworkin JP, Lauretta DS (2007) A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim Cosmochim Acta 71:1721–1736CrossRefGoogle Scholar
  18. Pasek MA, Harnmeijer JP, Buick R, Gull M, Atlas Z (2013) Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc Natl Acad Sci USA 110:10089–10094CrossRefPubMedPubMedCentralGoogle Scholar
  19. Pereto JG, Velasco AM, Becerra A, Lazcano A (1999) Comparative biochemistry of CO2 fixation and the evolution of the autotrophy. Int Microbiol 2:3–10PubMedGoogle Scholar
  20. Rivas M, Becerra A, Lazcano A (2018) On the early evolution of catabolic pathways: a comparative genomics approach. I. The cases of glucose, ribose, and the nucleobases catabolic routes. J Mol Evol 86:27–46CrossRefPubMedGoogle Scholar
  21. Sephton HH, Richtmyer NK (1963) Isolation of D-erythro-L-gluco-nonulose from the avocado. J Org Chem 28:2388–2390CrossRefGoogle Scholar
  22. Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M (2015) The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 90:927–963CrossRefPubMedGoogle Scholar
  23. Sutherland JD (2016) The origin of life—out of the blue. Angew Chem Int Ed 55:104–121CrossRefGoogle Scholar
  24. Zachar I, Szathmary E (2010) A new replicator: a theoretical framework for analysing replication. BMC Biol 8:21CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Génétique de Maladies Rares EA7402, Institut Universitaire de Recherche CliniqueUniversité de MontpellierMontpellierFrance
  2. 2.Laboratoire de Génétique MoléculaireInstitut Universitaire de Recherche Clinique, Centre Hospitalier Universitaire de MontpellierMontpellier Cedex 5France

Personalised recommendations