Advertisement

Optimal 4DFlow MR sequence parameters for the assessment of internal carotid artery stenosis: a simulation study

  • Joseph BenzakounEmail author
  • Pauline Roca
  • David Calvet
  • Olivier Naggara
  • Stéphanie Lion
  • Marie-Pierre Gobin-Metteil
  • Sylvain Charron
  • Victoria Cavero
  • Jean-François Meder
  • Myriam Edjlali
  • Catherine Oppenheim
Diagnostic Neuroradiology

Abstract

Purpose

In patients with ICA stenosis, increased peak systolic velocity is a marker of stenosis at risk of ischemic stroke. 4DFlow MRI is a reproducible technique to evaluate velocities in ICA stenosis, although it seems to underestimate velocities as compared with Doppler ultrasonography. The purpose of our study was to confirm that velocities were underestimated on a new set of data acquired with a clinical 4DFlow sequence, and to devise optimal acquisition parameters for ICA stenosis exploration based on a numerical simulation.

Methods

After review board approval, 15 healthy controls and 12 patients presenting ICA stenosis were explored with Doppler ultrasonography and 4DFlow MRI. We created a 2-dimensional simulation of ICA stenosis and its corresponding 4DFlow acquisition, and compared its mean peak systolic velocity underestimation to real MRI and Doppler. We then simulated the acquisition for voxel size ranging from 0.5 to 1.25 mm and number of phases per cardiac cycle ranging from 10 to 25.

Results

On acquired data, 4DFlow MR underestimated peak systolic velocities (mean difference between Doppler and 4DFlow: − 35 cm/s), especially high velocities. With spatial and temporal resolutions equivalent to MR acquisition, our simulation yielded similar underestimation (mean difference: − 31 cm/s, P = 0.30). Simulations showed that 0.7-mm resolution and 20 phases per cardiac cycle would be necessary to record peak systolic velocities up to 250 cm/s.

Conclusion

Higher spatial resolution can provide accurate peak systolic velocities measurement with 4DFlow MRI, thus allowing better ICA stenosis assessment. Further studies are needed to validate the proposed parameters.

Keywords

Magnetic resonance angiography Carotid artery Carotid stenosis Stroke 

Abbreviations

IQR

Interquartile range

kat-ARC

Autocalibrating parallel imaging with k-space and temporal undersampling

PC

Phase contrast

PSV

Peak systolic velocity

Venc

Velocity encoding

Notes

Funding

The study was partially supported by GE Healthcare. GE Healthcare employees were involved in the setup and configuration of the 4DFlow sequence but did not interfere during examination or analysis of the data.

Compliance with ethical standards

Conflict of Interest

VC-M, engineer at GE Healthcare, was involved in the setup of the 4DFlow sequence as well as in article proofreading for intellectual content, but did not interfere in data analysis.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Naylor AR, Ricco J-B, de Borst GJ, Debus S, de Haro J, Halliday A, Hamilton G, Kakisis J, Kakkos S, Lepidi S, Markus HS, McCabe DJ, Roy J, Sillesen H, van den Berg JC, Vermassen F, ESVS Guidelines Committee, Kolh P, Chakfe N, Hinchliffe RJ, Koncar I, Lindholt JS, Vega de Ceniga M, Verzini F, ESVS Guideline Reviewers, Archie J, Bellmunt S, Chaudhuri A, Koelemay M, Lindahl AK, Padberg F, Venermo M (2018) Editor’s choice - management of atherosclerotic carotid and vertebral artery disease: 2017 clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg 55:3–81.  https://doi.org/10.1016/j.ejvs.2017.06.021 CrossRefGoogle Scholar
  2. 2.
    Kakkos SK, Nicolaides AN, Charalambous I, Thomas D, Giannopoulos A, Naylor AR, Geroulakos G, Abbott AL, Asymptomatic Carotid Stenosis and Risk of Stroke (ACSRS) Study Group (2014) Predictors and clinical significance of progression or regression of asymptomatic carotid stenosis. J Vasc Surg 59:956–967.  https://doi.org/10.1016/j.jvs.2013.10.073 CrossRefGoogle Scholar
  3. 3.
    Grant EG, Benson CB, Moneta GL, Alexandrov AV, Baker JD, Bluth EI, Carroll BA, Eliasziw M, Gocke J, Hertzberg BS, Katanick S, Needleman L, Pellerito J, Polak JF, Rholl KS, Wooster DL, Zierler RE (2003) Carotid artery stenosis: gray-scale and Doppler US diagnosis--Society of Radiologists in Ultrasound Consensus Conference. Radiology 229:340–346.  https://doi.org/10.1148/radiol.2292030516 CrossRefGoogle Scholar
  4. 4.
    Barnett HJM, Taylor DW, Eliasziw M, Fox AJ, Ferguson GG, Haynes RB, Rankin RN, Clagett GP, Hachinski VC, Sackett DL, Thorpe KE, Meldrum HE, Spence JD (1998) Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. N Engl J Med 339:1415–1425.  https://doi.org/10.1056/NEJM199811123392002 CrossRefGoogle Scholar
  5. 5.
    Bonati LH, Nederkoorn PJ (2016) Clinical perspective of carotid plaque imaging. Neuroimaging Clin N Am 26:175–182.  https://doi.org/10.1016/j.nic.2015.09.012 CrossRefGoogle Scholar
  6. 6.
    Itatani K, Miyazaki S, Furusawa T, Numata S, Yamazaki S, Morimoto K, Makino R, Morichi H, Nishino T, Yaku H (2017) New imaging tools in cardiovascular medicine: computational fluid dynamics and 4D flow MRI. Gen Thorac Cardiovasc Surg 65:611–621.  https://doi.org/10.1007/s11748-017-0834-5 CrossRefGoogle Scholar
  7. 7.
    Turski P, Edjlali M, Oppenheim C (2013) Fast 4D flow MRI re-emerges as a potential clinical tool for neuroradiology. AJNR Am J Neuroradiol 34:1929–1930.  https://doi.org/10.3174/ajnr.A3664 CrossRefGoogle Scholar
  8. 8.
    Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042CrossRefGoogle Scholar
  9. 9.
    Turski P, Scarano A, Hartman E, Clark Z, Schubert T, Rivera L, Wu Y, Wieben O, Johnson K (2016) Neurovascular 4DFlow MRI (phase contrast MRA): emerging clinical applications. Neurovascular Imaging 2(8).  https://doi.org/10.1186/s40809-016-0019-0
  10. 10.
    van Ooij P, Powell AL, Potters WV, Carr JC, Markl M, Barker AJ (2016) Reproducibility and interobserver variability of systolic blood flow velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta. J Magn Reson Imaging 43:236–248.  https://doi.org/10.1002/jmri.24959 CrossRefGoogle Scholar
  11. 11.
    Chang W, Loecher MW, Wu Y, Niemann DB, Ciske B, Aagaard-Kienitz B, Kecskemeti S, Johnson KM, Wieben O, Mistretta C, Turski P (2012) Hemodynamic changes in patients with arteriovenous malformations assessed using high-resolution 3D radial phase-contrast MR angiography. Am J Neuroradiol 33:1565–1572.  https://doi.org/10.3174/ajnr.A3010 CrossRefGoogle Scholar
  12. 12.
    Harloff A, Zech T, Wegent F, Strecker C, Weiller C, Markl M (2013) Comparison of blood flow velocity quantification by 4D flow MR imaging with ultrasound at the carotid bifurcation. Am J Neuroradiol 34:1407–1413.  https://doi.org/10.3174/ajnr.A3419 CrossRefGoogle Scholar
  13. 13.
    Okuda S, Yamada Y, Tanimoto A, Fujita J, Sano M, Fukuda K, Kuribayashi S, Jinzaki M, Nozaki A, Lai P (2015) Three-dimensional cardiac cine imaging using the kat ARC acceleration: initial experience in clinical adult patients at 3 T. Magn Reson Imaging 33:911–917.  https://doi.org/10.1016/j.mri.2015.04.004 CrossRefGoogle Scholar
  14. 14.
    Arterys. http://arterys.com. Accessed March 25, 2019
  15. 15.
    Oktar SO, Yücel C, Karaosmanoglu D et al (2006) Blood-flow volume quantification in internal carotid and vertebral arteries: comparison of 3 different ultrasound techniques with phase-contrast MR imaging. Am J Neuroradiol 27:363–369Google Scholar
  16. 16.
    Liapis CD, Kakisis JD, Kostakis AG (2001) Carotid stenosis factors affecting symptomatology. Stroke 32:2782–2786.  https://doi.org/10.1161/hs1201.099797 CrossRefGoogle Scholar
  17. 17.
    Vasanawala SS, Hanneman K, Alley MT, Hsiao A (2015) Congenital heart disease assessment with 4D flow MRI. J Magn Reson Imaging 42:870–886.  https://doi.org/10.1002/jmri.24856 CrossRefGoogle Scholar
  18. 18.
    Harloff A, Albrecht F, Spreer J, Stalder AF, Bock J, Frydrychowicz A, Schöllhorn J, Hetzel A, Schumacher M, Hennig J, Markl M (2009) 3D blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3T. Magn Reson Med 61:65–74.  https://doi.org/10.1002/mrm.21774 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Joseph Benzakoun
    • 1
    • 2
    Email author
  • Pauline Roca
    • 1
    • 2
  • David Calvet
    • 2
    • 3
  • Olivier Naggara
    • 1
    • 2
  • Stéphanie Lion
    • 1
    • 2
  • Marie-Pierre Gobin-Metteil
    • 1
    • 2
  • Sylvain Charron
    • 1
    • 2
  • Victoria Cavero
    • 4
  • Jean-François Meder
    • 1
    • 2
  • Myriam Edjlali
    • 1
    • 2
  • Catherine Oppenheim
    • 1
    • 2
  1. 1.Service d’Imagerie Morphologique et FonctionnelleGHU ParisParisFrance
  2. 2.Université Paris DescartesParisFrance
  3. 3.Service de NeurologieGHU ParisParisFrance
  4. 4.GE HealthcareBucFrance

Personalised recommendations