, Volume 61, Issue 8, pp 897–910 | Cite as

Differentiation of lymphomatous, metastatic, and non-malignant lymphadenopathy in the neck with quantitative diffusion-weighted imaging: systematic review and meta-analysis

  • Seyedmehdi PayabvashEmail author
  • Alexandria Brackett
  • Reza Forghani
  • Ajay Malhotra
Head-Neck-ENT Radiology



To perform a systematic review and meta-analysis of literature comparing average apparent diffusion coefficient (ADC) for differentiating lymphomatous, metastatic, and non-malignant cervical lymphadenopathy.


We performed a comprehensive literature search of Ovid MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and Web of Science Core Collection. Studies comparing average ADC of lymphomatous, metastatic, and non-malignant neck lymph nodes were included. The standardized mean difference and 95% confidence interval (CI) was calculated using random-effects models. In subgroup analysis of those studies applying ADC threshold for differentiation of cervical lymphadenopathy, pooled diagnostic odds ratio (DOR) and summary receiver operating characteristics (sROC) area under the curve (AUC) were determined.


A total of 27 studies with 1165 patients were included, pooling data from 225 lymphomatous, 1162 metastatic, and 1333 non-malignant cervical lymph nodes. The average ADC values were lower in lymphomatous compared to metastatic nodes, and in metastatic compared to non-malignant nodes with a standardized mean difference of − 1.36 (95% CI: − 1.71 to − 1.01, p < 0.0001) and − 1.61 (95% CI: − 2.19 to − 1.04, p < 0.0001), respectively. In subgroup analysis, applying ADC threshold could differentiate lymphomatous from metastatic lymphadenopathy with DOR of 52.07 (95% CI 25.45–106.54) and sROC AUC of 0.936 (95% CI 0.896–0.979) and differentiate metastatic from non-malignant nodes with DOR of 39.45 (95% CI 16.92–92.18) and sROC AUC of 0.929 (95% CI 0.873–0.966).


Quantitative assessment of ADC can help with differentiation of suspicious cervical lymph nodes, particularly in those patients without prior history of malignancy or unknown primary cancer site.


Apparent diffusion coefficient Metastasis Lymphoma Cervical lymphadenopathy 



No funding was received for this study. RF is a clinical research scholar supported by the FRQS (Fonds de recherche en santé du Québec).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest with regard to present study. RF has, however, acted as consultant and speaker for GE Healthcare and is a founding partner and stockholder of 4Intel Inc.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was not required for the study, given the retrospective review of literature.

Supplementary material

234_2019_2236_MOESM1_ESM.pdf (17 kb)
ESM 1 (PDF 16 kb)


  1. 1.
    Lydiatt W, O'Sullivan B, Patel S (2018) Major changes in head and neck staging for 2018. In: Am Soc Clin Oncol Educ Book, pp 505–514Google Scholar
  2. 2.
    Glastonbury CM, Mukherji SK, O'Sullivan B, Lydiatt WM (2017) Setting the stage for 2018: how the changes in the American joint committee on cancer/Union for International Cancer Control cancer staging manual eighth edition impact radiologists. AJNR Am J Neuroradiol 38:2231–2237CrossRefGoogle Scholar
  3. 3.
    Curtin HD, Ishwaran H, Mancuso AA, Dalley RW, Caudry DJ, McNeil BJ (1998) Comparison of CT and MR imaging in staging of neck metastases. Radiology 207:123–130CrossRefGoogle Scholar
  4. 4.
    Martin JM, Galloway TJ (2015) Evaluation and management of head and neck squamous cell carcinoma of unknown primary. Surg Oncol Clin N Am 24:579–591CrossRefGoogle Scholar
  5. 5.
    Mackenzie K, Watson M, Jankowska P, Bhide S, Simo R (2016) Investigation and management of the unknown primary with metastatic neck disease: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol 130:S170–S175CrossRefGoogle Scholar
  6. 6.
    Frederiksen JK, Sharma M, Casulo C, Burack WR (2015) Systematic review of the effectiveness of fine-needle aspiration and/or core needle biopsy for subclassifying lymphoma. Arch Pathol Lab Med 139:245–251CrossRefGoogle Scholar
  7. 7.
    Payabvash S (2018) Quantitative diffusion magnetic resonance imaging in head and neck tumors. Quant Imaging Med Surg 8:1052–1065CrossRefGoogle Scholar
  8. 8.
    Payabvash S, Meric K, Cayci Z (2016) Differentiation of benign from malignant cervical lymph nodes in patients with head and neck cancer using PET/CT imaging. Clin Imaging 40:101–105CrossRefGoogle Scholar
  9. 9.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151:W65–W94CrossRefGoogle Scholar
  10. 10.
    Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM, Group Q (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536CrossRefGoogle Scholar
  11. 11.
    Cleophas TJ, Zwinderman AH (2009) Meta-analyses of diagnostic studies. Clin Chem Lab Med 47:1351–1354CrossRefGoogle Scholar
  12. 12.
    Takwoingi Y, Guo B, Riley RD, Deeks JJ (2017) Performance of methods for meta-analysis of diagnostic test accuracy with few studies or sparse data. Stat Methods Med Res 26:1896–1911CrossRefGoogle Scholar
  13. 13.
    Abdel Razek AA, Soliman NY, Elkhamary S, Alsharaway MK, Tawfik A (2006) Role of diffusion-weighted MR imaging in cervical lymphadenopathy. Eur Radiol 16:1468–1477CrossRefGoogle Scholar
  14. 14.
    Abdel Razek AAK, Kamal E (2013) Nasopharyngeal carcinoma: correlation of apparent diffusion coefficient value with prognostic parameters. Radiol Med 118:534–539CrossRefGoogle Scholar
  15. 15.
    Barchetti F, Pranno N, Giraldi G, Sartori A, Gigli S, Barchetti G, Lo Mele L, Marsella LT (2014) The role of 3 tesla diffusion-weighted imaging in the differential diagnosis of benign versus malignant cervical lymph nodes in patients with head and neck squamous cell carcinoma. Biomed Res Int 2014:532095Google Scholar
  16. 16.
    Cintra MB, Ricz H, Mafee MF, Dos Santos AC (2018) Magnetic resonance imaging: dynamic contrast enhancement and diffusion-weighted imaging to identify malignant cervical lymph nodes. Radiol Bras 51:71–75CrossRefGoogle Scholar
  17. 17.
    de Bondt RB, Hoeberigs MC, Nelemans PJ, Deserno WM, Peutz-Kootstra C, Kremer B, Beets-Tan RG (2009) Diagnostic accuracy and additional value of diffusion-weighted imaging for discrimination of malignant cervical lymph nodes in head and neck squamous cell carcinoma. Neuroradiology 51:183–192CrossRefGoogle Scholar
  18. 18.
    Goel V, Parihar PS, Parihar A, Goel AK, Waghwani K, Gupta R, Bhutekar U (2016) Accuracy of MRI in prediction of tumour thickness and nodal stage in oral tongue and gingivobuccal cancer with clinical correlation and staging. J Clin Diagn Res 10:TC01–TTC5Google Scholar
  19. 19.
    Holzapfel K, Duetsch S, Fauser C, Eiber M, Rummeny EJ, Gaa J (2009) Value of diffusion-weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes. Eur J Radiol 72:381–387CrossRefGoogle Scholar
  20. 20.
    Jin GQ, Yang J, Liu LD, Su DK, Wang DP, Zhao SF, Liao ZL (2016) The diagnostic value of 1.5-T diffusion-weighted MR imaging in detecting 5 to 10 mm metastatic cervical lymph nodes of nasopharyngeal carcinoma. Medicine 95:e4286CrossRefGoogle Scholar
  21. 21.
    King AD, Ahuja AT, Yeung DK, Fong DK, Lee YY, Lei KI, Tse GM (2007) Malignant cervical lymphadenopathy: diagnostic accuracy of diffusion-weighted MR imaging. Radiology 245:806–813CrossRefGoogle Scholar
  22. 22.
    Lee M-C, Tsai H-Y, Chuang K-S, Liu C-K, Chen M-K (2013) Prediction of nodal metastasis in head and neck cancer using a 3T MRI ADC map. AJNR Am J Neuroradiol 34:864–869CrossRefGoogle Scholar
  23. 23.
    Li H, Liu XW, Geng ZJ, Wang DL, Xie CM (2015) Diffusion-weighted imaging to differentiate metastatic from non-metastatic retropharyngeal lymph nodes in nasopharyngeal carcinoma. Dentomaxillofac Radiol 44:20140126–20140126CrossRefGoogle Scholar
  24. 24.
    Liang L, Luo X, Lian Z, Chen W, Zhang B, Dong Y, Liang C, Zhang S (2017) Lymph node metastasis in head and neck squamous carcinoma: efficacy of intravoxel incoherent motion magnetic resonance imaging for the differential diagnosis. Eur J Radiol 90:159–165CrossRefGoogle Scholar
  25. 25.
    Lim HK, Lee JH, Baek HJ, Kim N, Lee H, Park JW, Kim SY, Cho KJ, Baek JH (2014) Is diffusion-weighted MRI useful for differentiation of small non-necrotic cervical lymph nodes in patients with head and neck malignancies? Korean J Radiol 15:810–816CrossRefGoogle Scholar
  26. 26.
    Salem F, Elshafey R, Elmahalawy M, Elshaeny S (2014) Apparent diffusion coefficient measurements in the differentiation between benign and malignant neck masses. Egypt J Radiol Nucl Med 45:367–375CrossRefGoogle Scholar
  27. 27.
    Si J, Huang S, Shi H, Liu Z, Hu Q, Wang G, Shen G, Zhang D (2014) Usefulness of 3T diffusion-weighted MRI for discrimination of reactive and metastatic cervical lymph nodes in patients with oral squamous cell carcinoma: a pilot study. Dentomaxillofac Radiol 43:20130202CrossRefGoogle Scholar
  28. 28.
    Sumi M, Sakihama N, Sumi T, Morikawa M, Uetani M, Kabasawa H, Shigeno K, Hayashi K, Takahashi H, Nakamura T (2003) Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. AJNR Am J Neuroradiol 24:1627–1634Google Scholar
  29. 29.
    Sumi M, Nakamura T (2009) Diagnostic importance of focal defects in the apparent diffusion coefficient-based differentiation between lymphoma and squamous cell carcinoma nodes in the neck. Eur Radiol 19:975–981CrossRefGoogle Scholar
  30. 30.
    Taha Ali TF (2012) Neck lymph nodes: characterization with diffusion-weighted MRI. Egypt J Radiol Nucl Med 43:173–181CrossRefGoogle Scholar
  31. 31.
    Taha Ali TF, El Hariri MA (2017) Combined diffusion-weighted MRI and MR spectroscopy: feasibility to improve the MRI capability in differentiation between benign and malignant neck lymphadenopathy. Egypt J Radiol Nucl Med 48:97–106CrossRefGoogle Scholar
  32. 32.
    Vandecaveye V, De Keyzer F, Vander Poorten V, Dirix P, Verbeken E, Nuyts S, Hermans R (2009) Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiology 251:134–146CrossRefGoogle Scholar
  33. 33.
    Vidiri A, Minosse S, Piludu F, Pellini R, Cristalli G, Kayal R, Carlino G, Renzi D, Covello R, Marzi S (2019) Cervical lymphadenopathy: can the histogram analysis of apparent diffusion coefficient help to differentiate between lymphoma and squamous cell carcinoma in patients with unknown clinical primary tumor. Radiol Med 124:19–26CrossRefGoogle Scholar
  34. 34.
    Wang YJ, Xu XQ, Hu H, Su GY, Shen J, Shi HB, Wu FY (2018) Histogram analysis of apparent diffusion coefficient maps for the differentiation between lymphoma and metastatic lymph nodes of squamous cell carcinoma in head and neck region. Acta Radiol 59:672–680CrossRefGoogle Scholar
  35. 35.
    Wendl CM, Muller S, Eiglsperger J, Fellner C, Jung EM, Meier JK (2016) Diffusion-weighted imaging in oral squamous cell carcinoma using 3 Tesla MRI: is there a chance for preoperative discrimination between benign and malignant lymph nodes in daily clinical routine. Acta Radiol 57:939–946CrossRefGoogle Scholar
  36. 36.
    Yamada I, Yoshino N, Hikishima K, Sakamoto J, Yokokawa M, Oikawa Y, Harada H, Kurabayashi T, Saida Y, Tateishi U, Yukimori A, Izumo T, Asahina S (2018) Oral carcinoma: clinical evaluation using diffusion kurtosis imaging and its correlation with histopathologic findings. Magn Reson Imaging 51:69–78CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Chen J, Shen J, Zhong J, Ye R, Liang B (2013) Apparent diffusion coefficient values of necrotic and solid portion of lymph nodes: differential diagnostic value in cervical lymphadenopathy. Clin Radiol 68:224–231CrossRefGoogle Scholar
  38. 38.
    Zhang S-C, Zhou S-H, Shang D-S, Bao Y-Y, Ruan L-X, Wu T-T (2018) The diagnostic role of diffusion-weighted magnetic resonance imaging in hypopharyngeal carcinoma. Oncol Lett 15:5533–5544Google Scholar
  39. 39.
    Zhong J, Lu Z, Xu L, Dong L, Qiao H, Hua R, Gong Y, Liu Z, Hao C, Liu X, Zong C, He L, Liu J (2014) The diagnostic value of cervical lymph node metastasis in head and neck squamous carcinoma by using diffusion-weighted magnetic resonance imaging and computed tomography perfusion. Biomed Res Int 2014:260859Google Scholar
  40. 40.
    Abdel Razek AA, Gaballa G, Elhawarey G, Megahed AS, Hafez M, Nada N (2009) Characterization of pediatric head and neck masses with diffusion-weighted MR imaging. Eur Radiol 19:201–208CrossRefGoogle Scholar
  41. 41.
    Dawood HA, Hassan TA, Mohey N (2014) Value of combined real time sonoelastography and apparent diffusion coefficient value measurement in differentiation of enlarged neck lymph nodes. Egypt J Radiol Nucl Med 45:387–394CrossRefGoogle Scholar
  42. 42.
    Eiber M, Dutsch S, Gaa J, Fauser C, Rummeny EJ, Holzapfel K (2008) Diffusion-weighted magnetic resonance imaging (DWI-MRI): a new method to differentiate between malignant and benign cervical lymph nodes. Laryngorhinootologie 87:850–855CrossRefGoogle Scholar
  43. 43.
    Sumi M, Van Cauteren M, Nakamura T (2006) MR microimaging of benign and malignant nodes in the neck. AJR Am J Roentgenol 186:749–757CrossRefGoogle Scholar
  44. 44.
    Kato H, Kanematsu M, Kato Z, Teramoto T, Mizuta K, Aoki M, Makita H, Kato K (2013) Necrotic cervical nodes: usefulness of diffusion-weighted MR imaging in the differentiation of suppurative lymphadenitis from malignancy. Eur J Radiol 82:e28–e35CrossRefGoogle Scholar
  45. 45.
    Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188:1622–1635CrossRefGoogle Scholar
  46. 46.
    Driessen JP, van Kempen PM, van der Heijden GJ, Philippens ME, Pameijer FA, Stegeman I, Terhaard CH, Janssen LM, Grolman W (2015) Diffusion-weighted imaging in head and neck squamous cell carcinomas: a systematic review. Head Neck 37:440–448CrossRefGoogle Scholar
  47. 47.
    Wu LM, Xu JR, Hua J, Gu HY, Zhu J, Hu J (2013) Value of diffusion-weighted MR imaging performed with quantitative apparent diffusion coefficient values for cervical lymphadenopathy. J Magn Reson Imaging 38:663–670CrossRefGoogle Scholar
  48. 48.
    Zhou M, Lu B, Lv G, Tang Q, Zhu J, Li J, Shi K (2015) Differential diagnosis between metastatic and non-metastatic lymph nodes using DW-MRI: a meta-analysis of diagnostic accuracy studies. J Cancer Res Clin Oncol 141:1119–1130CrossRefGoogle Scholar
  49. 49.
    Long M, Wang L, Mou L, Zhang K, Liu L, Li Y, Liu X, Yu W, Gao G, Chen X, Shen W, Shrestha A (2018) Z-score transformation of ADC values: a way to universal cut off between malignant and benign lymph nodes. Eur J Radiol 106:122–127CrossRefGoogle Scholar
  50. 50.
    Suh CH, Choi YJ, Baek JH, Lee JH (2018) The diagnostic value of diffusion-weighted imaging in differentiating metastatic lymph nodes of head and neck squamous cell carcinoma: a systematic review and meta-analysis. AJNR Am J Neuroradiol 39:1889–1895CrossRefGoogle Scholar
  51. 51.
    Stecco A, Buemi F, Cassara A, Matheoud R, Sacchetti GM, Arnulfo A, Brambilla M, Carriero A (2016) Comparison of retrospective PET and MRI-DWI (PET/MRI-DWI) image fusion with PET/CT and MRI-DWI in detection of cervical and endometrial cancer lymph node metastases. Radiol Med 121:537–545CrossRefGoogle Scholar
  52. 52.
    Kolff-Gart AS, Pouwels PJ, Noij DP, Ljumanovic R, Vandecaveye V, de Keyzer F, de Bree R, de Graaf P, Knol DL, Castelijns JA (2015) Diffusion-weighted imaging of the head and neck in healthy subjects: reproducibility of ADC values in different MRI systems and repeat sessions. AJNR Am J Neuroradiol 36:384–390CrossRefGoogle Scholar
  53. 53.
    Paudyal R, Konar AS, Obuchowski NA, Hatzoglou V, Chenevert TL, Malyarenko DI, Swanson SD, LoCastro E, Jambawalikar S, Liu MZ, Schwartz LH, Tuttle RM, Lee N, Shukla-Dave A (2019) Repeatability of quantitative diffusion-weighted imaging metrics in phantoms, head-and-neck and thyroid cancers: preliminary findings. Tomography 5:15–25CrossRefGoogle Scholar
  54. 54.
    Shukla-Dave A, Obuchowski NA, Chenevert TL, Jambawalikar S, Schwartz LH, Malyarenko D, Huang W, Noworolski SM, Young RJ, Shiroishi MS, Kim H, Coolens C, Laue H, Chung C, Rosen M, Boss M, Jackson EF (2018) Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson ImagingGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenUSA
  2. 2.Cushing/Whitney Medical LibraryYale School of MedicineNew HavenUSA
  3. 3.Department of Radiology, Gerald Bronfman Department of Oncology, and Department of Otolaryngology - Head and Neck SurgeryMcGill UniversityMontrealCanada

Personalised recommendations