Advertisement

Correlations between cervical spinal cord magnetic resonance diffusion tensor and diffusion kurtosis imaging metrics and motor performance in patients with chronic ischemic brain lesions of the corticospinal tract

  • Valentina Panara
  • R. Navarra
  • P. A. Mattei
  • E. Piccirilli
  • V. Bartoletti
  • A. Uncini
  • M. Caulo
Spinal Neuroradiology

Abstract

Purpose

To investigate modifications of Magnetic Resonance Diffusion Tensor Imaging (DTI) and Diffusion Kurtosis Imaging (DKI) metrics in lateral white matter (WM) bundles of the cervical spinal cord in patients with previous stroke in the vascular territory of the middle cerebral artery (MCA).

Methods

Twenty consecutive patients with a previous ischemic stroke of the MCA territory and a varying degree of upper motor impairment were enrolled. DKI was centered at the C3C4 and C5C6 intervertebral level.

Results

The fractional anisotropy (FA) values in C3C4 and C5C6 were found to be significantly lower in the lateral WM bundles contralateral to the ischemic lesion and thus, in the WM bundle including the affected corticospinal tract (CST) (p = 0.005 and p = 0.008, respectively), as well as mean kurtosis (MK) and axonal water fraction (AWF) values (p = 0.004 and p = 0.04. respectively). FA values correlated significantly with the Global Motor Index (GMI) both for C3C4 (ρ = 0.61, p = 0.004) and C5C6 (ρ = 0.69, p = 0.002). At C3C4, AWF correlated significantly with GMI (ρ = 0.54, p = 0.03). No correlations were found between lateral WM bundle volumes and GMI.

Conclusion

A reduction of anisotropy and microstructural complexity in the affected lateral WM bundle of the cervical spinal cord was observed in patients with previous ischemic stroke involving the CST. The correlations between these metrics and motor performance were statistically significant.

Keywords

Diffusion kurtosis imaging Diffusion tensor imaging Spinal cord Stroke 

Abbreviations

AWF

Axonal water fraction

CST

Corticospinal tract

cSC

Cervical spinal cord

DTI

Diffusion tensor imaging

DKI

Diffusion kurtosis imaging

FA

Fractional anisotropy

MK

Mean kurtosis

RK

Radial kurtosis

AK

Axial kurtosis

GMI

Global motor index

Notes

Compliance with ethical standards

Funding

No funding was received for this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Langhorne P, Coupar F, Pollock A (2009) Motor recovery after stroke: a systematic review. Lancet Neurol 8:741–754. https://doi.org/10.1016/S1474-4422[09]70150-4Google Scholar
  2. 2.
    Park CH, Kou N, Boudrias MH, Playford ED, Ward NS (2013) Assessing a standardised approach to measuring corticospinal integrity after stroke with DTI. NeuroImage 2:521–533.  https://doi.org/10.1016/j.nicl.2013.04.002.521-533 CrossRefGoogle Scholar
  3. 3.
    Ward NS, Newton JM, Swayne OB et al (2006) Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129:809–819.  https://doi.org/10.1093/brain/awl002. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pierpaoli C, Basser PJ (1996a) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36(6):893–906CrossRefGoogle Scholar
  5. 5.
    Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996b) Diffusion tensor MR imaging of the human brain. Radiology 201(3):637–648CrossRefGoogle Scholar
  6. 6.
    Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432–1440.  https://doi.org/10.1002/mrm.20508 CrossRefGoogle Scholar
  7. 7.
    Panara V, Navarra R, Mattei PA, Piccirilli E, Cotroneo AR, Papinutto N, Henry RG, Uncini A, Caulo M (2017) Spinal cord microstructure integrating phase-sensitive inversion recovery and diffusional kurtosis imaging. Neuroradiology 59(8):819–827.  https://doi.org/10.1007/s00234-017-1864-5 CrossRefGoogle Scholar
  8. 8.
    Van Cauter S, Veraart J, Sijbers J, Peeters RR, Himmelreich U, De Keyzer F et al (2012) Gliomas: diffusion kurtosis MR imaging in grading. Radiology 263(2):492–501CrossRefGoogle Scholar
  9. 9.
    Jensen JH, Helpern JA (2011) MRI quantification of non-Gaussian water diffusion by kurtosis analysis. 23(7):698–710.  https://doi.org/10.1148/radiol.12110927
  10. 10.
    Spampinato XMV, Chan XC, Jensen XJH, Helpern XJA Bonilha XL, Kautz XSA et al (2017) Diffusional kurtosis imaging and motor outcome in acute ischemic stroke. AJNR 38(7):1328–1334.  https://doi.org/10.3174/ajnr.A5180 CrossRefGoogle Scholar
  11. 11.
    Lindberg G, Bensmail D, Bussel B, Maier MA, Feydy A (2011) Wallerian degeneration in lateral cervical spinal cord detected with diffusion tensor imaging in four chronic stroke patients. J Neuroimaging 21(1):44–48.  https://doi.org/10.1111/j.1552-6569.2009.00409.x CrossRefGoogle Scholar
  12. 12.
    Rabadi MH, Rabadi FM (2006) Comparison of the action research arm test and the Fugl-Meyer assessment as measures of upper-extremity motor weakness after stroke. Arch Phys Med Rehabil 87:962–966.  https://doi.org/10.1016/j.apmr.2006.02.036 CrossRefGoogle Scholar
  13. 13.
    Taber KH, Herrick RC, Weathers SW, Kumar AJ, Schomer DF, Hayman LA (1998) Pitfalls and artifacts encountered in clinical MR imaging of the spine. Radiographics 18(6):1499–1521.  https://doi.org/10.1148/radiographics.18.6.9821197 CrossRefGoogle Scholar
  14. 14.
    Kearney H, Yiannakas MC, Abdel-Aziz K, Wheeler-Kingshott CA, Altmann DR, Ciccarelli O, Miller DH (2014) Improved MRI quantification of spinal cord atrophy in multiple sclerosis. J Magn Reson Imaging 39(3):617–623.  https://doi.org/10.1002/jmri.24194 CrossRefGoogle Scholar
  15. 15.
    Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3):1116–1128.  https://doi.org/10.1016/j.neuroimage.2006.01.015 CrossRefGoogle Scholar
  16. 16.
    Tabesh A, Jensen JH, Ardekani BA, Helpern JA (2011) Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med 65(3):823–836.  https://doi.org/10.1002/mrm.22655 CrossRefGoogle Scholar
  17. 17.
    Chang LC, Jones DK, Pierpaoli C (2005) RESTORE: robust estimation of tensors by outlier rejection. Magn Reson Med 53(5):1088–1095.  https://doi.org/10.1002/mrm.20426 CrossRefGoogle Scholar
  18. 18.
    Fieremans E, Jensen JH, Helpern JA (2011) White matter characterization with diffusional kurtosis imaging. NeuroImage 58(1):177–188.  https://doi.org/10.1016/j.neuroimage.2011.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    De Leener B, Kadoury S, Cohen-Adad J (2014) Robust, accurate and fast automatic segmentation of the spinal cord. NeuroImage 98:528–536.  https://doi.org/10.1016/j.neuroimage.2014.04.051 CrossRefGoogle Scholar
  20. 20.
    Levy S, Benhamou M, Naaman C, Rainville P, Callot V, Cohen- Adad J (2015) White matter atlas of the human spinal cord with estimation of partial volume effect. NeuroImage 119:262–271.  https://doi.org/10.1016/j.neuroimage.2015.06.040 CrossRefPubMedGoogle Scholar
  21. 21.
    Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S (1975) The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med 7(1):13–31PubMedGoogle Scholar
  22. 22.
    Collin C, Wade D (1990) Assessing motor impairment after stroke: a pilot reliability study. J Neurol Neurosurg Psychiatry 53(7):576–579CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mathiowetz V, Volland G, Kashman N, Weber K (1985) Adult norms for the box and block test of manual dexterity. Am J Occup Ther 39(6):386–391CrossRefPubMedGoogle Scholar
  24. 24.
    Rothman KJ (1990) No adjustment are needed for multiple comparisons. Epidemiology 1(1):43–46CrossRefPubMedGoogle Scholar
  25. 25.
    Lindenberg R, Renga V, Zhu LL, Betzler F, Alsop D (2010) Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke. Neurology 74:280–287.  https://doi.org/10.1212/WNL.0b013e3181ccc6d9 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pineiro R, Pendlebury ST, Smith S, Flitney D, Blamire AM, Styles P, Matthews PM (2000) Relating MRI changes to motor deficit after ischemic stroke by segmentation of functional motor pathways. Stroke 31:672–679CrossRefPubMedGoogle Scholar
  27. 27.
    Schiemanck SK, Kwakkel G, Post MW, Kappelle LJ, Prevo AJ (2008) Impact of internal capsule lesions on outcome of motor hand function at one year post-stroke. J Rehabil Med 40:96–101.  https://doi.org/10.2340/16501977-0130 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jin R, Liu L, Zhang S, Nanda A, Li G (2013) Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res 6(5):834–851.  https://doi.org/10.1007/s12265-013-9508-6 CrossRefGoogle Scholar
  29. 29.
    Choudhury GR, Ding S (2016) Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis 85:234–244.  https://doi.org/10.1016/j.nbd.2015.05.003 CrossRefGoogle Scholar
  30. 30.
    Virta A, Barnett AL, Pierpaoli C (1999) Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI. Magn Reson Imaging 17(8):1121–1133CrossRefGoogle Scholar
  31. 31.
    Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix LR, Virta A, Basser P (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. NeuroImage 13:1174–1185.  https://doi.org/10.1006/nimg.2001.0765 CrossRefGoogle Scholar
  32. 32.
    Prados F, Ashburner J, Blaiotta C, Brosch T, Carballido-Gamio J, Cardoso MJ, Conrad BN, Datta E, David G, De Leener B, Duponte SM, Freund P, Wheeler-Kingshott C, Grussu F, Henry R, Landman BA, Ljungberg E, Lyttle B, Ourselin B, Papinutto N, Saporito S, Schlaeger R, Smith SA, Summers P, Tami R, Yiannakas MC, Zhu A, Cohen-Adad (2017) Spinal cord grey matter segmentation challenge. NeuroImage 152:312–329.  https://doi.org/10.1016/j.neuroimage.2017.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Papinutto N, Schlaeger R, Panara V, Caverzasi E, Ahn S, Johnson KJ, Zhu AH, Stern WA, Laub G, Hauser SL, Henry RG (2015) 2D phase-sensitive inversion recovery imaging to measure in vivo spinal cord gray and white matter areas in clinically feasible acquisition times. J Magn Reson Imaging 42(3):698–708.  https://doi.org/10.1002/jmri.24819 CrossRefGoogle Scholar
  34. 34.
    Papinutto N, Schlaeger R, Panara V, Zhu AH, Caverzasi E, Stern WA, Hauser SL, Henry RG (2015) Age, gender and normalization covariates for spinal cord gray matter and total cross-sectional areas at cervical and thoracic levels: a 2D phase sensitive inversion recovery imaging study. PLoS One 10(3):e0118576.  https://doi.org/10.1371/journal.pone.0118576 Published online 2015 Mar 17CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Schlaeger R, Papinutto N, Panara V, Bevan C, Lobach IV, Bucci M, Caverzasi E, Gelfand JM, Green AJ, Jordan KM, Stern WA, von Büdingen HC, Waubant E, Zhu AH, Goodin DS, Cree BA, Hauser SL, Henry RG (2014) Spinal cord gray matter atrophy correlates with multiple sclerosis disability. Ann Neurol 76(4):568–580.  https://doi.org/10.1002/ana.24241 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schlaeger R, Papinutto N, Zhu AH, Lobach IV, Bevan CJ, Bucci M, Castellano A, Gelfand JM, Graves JS, Green AJ, Jordan KM, Keshavan A, Panara V, Stern WA, von Büdingen HC, Waubant E, Goodin DS, Cree BA, Hauser SL, Henry RG (2015) Association between thoracic spinal cord gray matter atrophy and disability in multiple sclerosis. JAMA Neurol 72(8):897–904.  https://doi.org/10.1001/jamaneurol.2015.0993 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ITAB-Institute of Advanced Biomedical TechnologiesUniversity “G. D’Annunzio” Chieti-PescaraChietiItaly
  2. 2.Department of Neuroscience, Imaging and Clinical SciencesUniversity “G. D’Annunzio” Chieti-PescaraChietiItaly

Personalised recommendations