Advertisement

Structure theory of regular semigroups

  • Mária B. SzendreiEmail author
Survey
  • 33 Downloads

Abstract

This survey aims to give an overview of several substantial developments of the last 50 years in the structure theory of regular semigroups and to shed light on their impact on other parts of semigroup theory.

Keywords

Regular semigroup Biordered set Inductive groupoid Cross-connection Semidirect product Pastijn product 

Notes

References

  1. 1.
    Auinger, K.: On Existence Varieties of Regular Semigroups, Semigroups, Algorithms, Automata and Languages (Coimbra, 2001), pp. 65–89. World Sci. Publ, River Edge (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Auinger, K., Oliveira, L.: On the variety of strict pseudosemilattices. Stud. Sci. Math. Hung. 50, 207–241 (2013)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Billhardt, B.: On embeddability into a semidirect product of a band by a group. J. Algebra 206, 40–50 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Billhardt, B., Szendrei, M.B.: Weakly \(E\)-unitary locally inverse semigroups. J. Algebra 267, 559–576 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Billhardt, B., Szittyai, I.: On embedabbility of idempotent separating extensions of inverse semigroups. Semigroup Forum 61, 26–31 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Brittenham, M., Margolis, S.W., Meakin, J.: Subgroups of the free idempotent generated semigroups need not be free. J. Algebra 321, 3026–3042 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Broeksteeg, R.: The set of idempotents of a completely regular semigroup as a binary algebra. Bull. Austral. Math. Soc. 50, 91–107 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Clifford, A.H.: The fundamental representation of a regular semigroup. Semigroup Forum 10, 84–92 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Clifford, A.H.: The fundamental representation of a completely regular semigroup. Semigroup Forum 12, 341–346 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Dékány, T., Szendrei, M.B., Szittyai, I.: \(E\)-solid locally inverse semigroups, Acta Sci. Math. acceptedGoogle Scholar
  11. 11.
    Dolinka, I., Gray, R.D., Ruškuc, N.: On regularity and the word problem for free idempotent generated semigroups. Proc. Lond. Math. Soc. (3) 114, 401–432 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dolinka, I., Ruškuc, N.: Every group is a maximal subgroup of the free idempotent generated semigroup over a band. Int. J. Algebra Comput. 23, 573–581 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Easdown, D.: Biordered sets of bands. Semigroup Forum 29, 241–246 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Easdown, D.: Biordered sets of eventually regular semigroups. Proc. Lond. Math. Soc. (3) 49, 483–503 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Easdown, D.: Biordered sets come from semigroups. J. Algebra 96, 581–591 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Easdown, D.: Biorder-preserving coextensions of fundamental semigroups. Proc. Edinb. Math. Soc. 31, 463–467 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Easdown, D., Hall, T.E.: Reconstructing some idempotent-generated semigroups from their biordered sets. Semigroup Forum 29, 207–216 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Easdown, D., Jordan, P., Roberts, B.: Biordered sets and fundamental semigroups. Semigroup Forum 81, 85–101 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Edwards, P.M.: Eventually regular semigroups. Bull. Aust. Math. Soc. 28, 23–38 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Edwards, P.M.: Fundamental semigroups. Proc. R. Soc. Edinb. Sect. A 99, 313–317 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Fountain, J., Pin, J.-E., Weil, P.: Covers for monoids. J. Algebra 271, 529–586 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Gould, V.: Notes on restriction semigroups and related structures; formerly (Weakly) left \(E\)-ample semigroups. http://www-users.york.ac.uk/~varg1/restriction.pdf
  23. 23.
    Gould, V., Yang, D.: Every group is a maximal subgroup of a naturally occurring free idempotent generated semigroup. Semigroup Forum 89, 125–134 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Gray, R., Ruskuc, N.: On maximal subgroups of free idempotent generated semigroups. Isr. J. Math. 189, 147–176 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Grillet, P.A.: The structure of regular semigroups. I. A representation. Semigroup Forum 8, 177–183 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Grillet, P.A.: The structure of regular semigroups. II. Cross-connections. Semigroup Forum 8, 254–259 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Grillet, P.A.: The structure of regular semigroups. III. The reduced case. Semigroup Forum 8, 260–265 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Grillet, P.A.: The structure of regular semigroups. IV. The general case. Semigroup Forum 8, 368–373 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Grillet, P.A.: Semigroups. An Introduction to the Structure Theory. Monographs and Textbooks in Pure and Applied Mathematics, vol. 193. Marcel Dekker Inc., New York (1995)zbMATHGoogle Scholar
  30. 30.
    Hall, T.E.: On orthodox semigroups and uniform and antiuniform bands. J. Algebra 16, 204–217 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Hall, T.E.: On regular semigroups. J. Algebra 24, 1–24 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Hartmann, M.: Almost factorizable orthodox semigroups. Semigroup Forum 74, 106–124 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Hartmann, M., Szendrei, M.B.: \(E\)-unitary almost factorizable orthodox semigroups. Semigroup Forum 84, 157–175 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Howie, J.M.: An Introduction to Semigroup Theory. L.M.S. Monographs, vol. 7. Academic Press, London-New York (1976)zbMATHGoogle Scholar
  35. 35.
    Howie, J.M.: Fundamentals of Semigroup Theory. London Mathematical Society Monographs, New Series, vol. 12. The Clarendon Press, New York (1995)zbMATHGoogle Scholar
  36. 36.
    Jones, P.R.: An introduction to existence varieties of regular semigroups. Southeast Asian Bull. Math. 19, 107–118 (1995)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Kad’ourek, J.: On some existence varieties of locally inverse semigroups. Int. J. Algebra Comput. 6, 761–788 (1996)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lawson, M.V.: Inverse Semigroups. The Theory of Partial Symmetries. World Sci. Publishing Co., Inc, River Edge (1998)zbMATHCrossRefGoogle Scholar
  39. 39.
    McAlister, D.B.: Rees matrix covers for locally inverse semigroups. Trans. Am. Math. Soc. 277, 727–738 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    McAlister, D.B.: Rees matrix covers for regular semigroups. J. Algebra 89, 264–279 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    McElwee, B.: Subgroups of the free semigroup on a biordered set in which principal ideals are singletons. Commun. Algebra 30, 5513–5519 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Meakin, J.: The structure mappings on a regular semigroup. Proc. Edinb. Math. Soc. 21, 135–142 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Meakin, J.: The free local semilattice on a set. J. Pure Appl. Algebra 27, 263–275 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Muhammed, P.A.A., Volkov, M.V.: Inductive groupoids and cross-connections of regular semigroups. Acta Math. Hung. 157, 80–120 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Muhammed, P.A.A., Volkov, M.V.: The tale of two categories: inductive groupoids and cross-connections. arXiv:1901.05731v2, (2019)
  46. 46.
    Nambooripad, K.S.S.: Structure of regular semigroups. PhD thesis, University of Kerala (India) (1973)Google Scholar
  47. 47.
    Nambooripad, K.S.S.: Structure of regular semigroups. I. Fundamental regular semigroups. Semigroup Forum 9, 354–363 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Nambooripad, K.S.S.: Structure of regular semigroups. II. The general case. Semigroup Forum 9, 364–371 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Nambooripad, K.S.S.: Structure of Regular Semigroups. I, vol. 22(224). American Mathematical Society, Providence (1979)zbMATHGoogle Scholar
  50. 50.
    Nambooripad, K.S.S.: Pseudosemilattices and biordered sets. I. Simon Stevin 55, 103–110 (1981)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Nambooripad, K.S.S.: Structure of Regular Semigroups II. Cross-Connections, vol. 15. Centre for Mathematical Sciences, Trivandrum (1989)zbMATHGoogle Scholar
  52. 52.
    Nambooripad, K.S.S.: Theory of Cross-Connections, vol. 28. Centre for Mathematical Sciences, Trivandrum (1994)zbMATHGoogle Scholar
  53. 53.
    Nambooripad, K.S.S.: Theory of Regular Semigroups. Sayahna Foundation, Thiruvananthapuram (2018)Google Scholar
  54. 54.
    Nambooripad, K.S.S., Pastijn, F.: Subgroups of free idempotent generated regular semigroups. Semigroup Forum 21, 1–7 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Pastijn, F.: The structure of pseudo-inverse semigroups. Trans. Am. Math. Soc. 273, 631–655 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Pastijn, F., Petrich, M.: Straight locally inverse semigroups. Proc. Lond. Math. Soc. (3) 49, 307–328 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Pastijn, F., Petrich, M.: Regular Semigroups as Extensions. Research Notes in Mathematics, vol. 136. Pitman, Boston (1985)zbMATHGoogle Scholar
  58. 58.
    Petrich, M.: Inverse Semigroups. Pure and Applied Mathematics (New York). Wiley, New York (1984)zbMATHGoogle Scholar
  59. 59.
    Petrich, M., Reilly, N.R.: Completely Regular Semigroups. Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 23. Wiley, New York (1999)zbMATHGoogle Scholar
  60. 60.
    Šaĭn, B.M.: On the theory of generalized groups and generalized heaps (Russian) theory of Semigroups and Appl. I (Russian), 286–324, Izdat. Saratov. Univ., Saratov, (1965); translation in: Schein, B.M.: On the theory of inverse semigroups and generalized grouds, American Mathematical Society Translations (2) 113, 89–122 (1979)Google Scholar
  61. 61.
    Szendrei, M.B.: Extensions of regular orthogroups by groups. J. Aust. Math. Soc. Ser. A 59, 28–60 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Szendrei, M.B.: Almost factorizable locally inverse semigroups. Int. J. Algebra Comput. 21, 1037–1052 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Trotter, P.G.: Congruence extensions in regular semigroups. J. Algebra 137, 166–179 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Trotter, P.G.: Covers for regular semigroups and an application to complexity. J. Pure Appl. Algebra 105, 319–328 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Trotter, P.G.: e-Varieties of Regular Semigroups, Semigroups, Automata and Languages (Porto, 1994), pp. 247–262. World Sci. Publ., River Edge (1996)zbMATHGoogle Scholar
  66. 66.
    Veeramony, R.: Proper pseudo-inverse semigroups. Simon Stevin 58, 65–86 (1984)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Wang, Y.: Beyond regular semigroups. Semigroup Forum 92, 414–448 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Yamada, M.: On a certain class of regular semigroups. In: Proceedings of the Symposium of Regular Semigroups (DeKalb), pp. 146–179 (1979)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bolyai InstituteUniversity of SzegedSzegedHungary
  2. 2.Alfréd Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations