Semigroup Forum

, Volume 98, Issue 2, pp 299–314 | Cite as

Representation theorems for Q-algebras

  • Shengwei HanEmail author
  • Bin Zhao
Research Article


Q-algebras generalize quantales and Q-modules, and play an important role in the study of lattice-valued quantales, lattice-valued frames and stratified lattice-valued topological spaces. Motivated by representation theorems of quantales, we provide three new representation theorems of Q-algebras.


Complete lattice Quantale Q-algebra Nucleus Module relation Q-module homomorphism 



This work was supported by the National Natural Science Foundation of China (Grant No. 11531009) and the Fundamental Research Funds for the Central Universities (GK201501001). We also wish to express our sincere thanks to the anonymous referees for their useful suggestions and valuable comments which helped to improve the quality of the results.


  1. 1.
    Abramsky, S., Vickers, S.: Quantale, observational logic and process semantics. Math. Struct. Comput. Sci. 3(2), 161–227 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Birkhoff, G.: Lattice Theory. American Mathematical Society, New York (1940)zbMATHGoogle Scholar
  3. 3.
    Brown, C., Gurr, D.: A representation theorem for quantales. J. Pure Appl. Algebra 85, 27–42 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brown, C., Gurr, D.: Relations and non-commutative linear logic. J. Pure Appl. Algebra 105(2), 117–136 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Han, S.W., Zhao, B.: \(Q\)-fuzzy subsets on ordered semigroups. Fuzzy Sets Syst. 210(1), 102–116 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Han, S.W., Zhao, B.: On the power-set \(Q\)-algebras. Semigroup Forum 92(1), 214–227 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Han, S.W., Pan, F.F.: On the homomorphisms of power-set \(Q\)-algebras. Semigroup Forum 94(1), 80–92 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hoare, C.A.R., He, J.: A weakest pre-specification. Inf. Process. Lett. 24, 127–132 (1987)CrossRefGoogle Scholar
  10. 10.
    Kruml, D., Paseka, J.: Algebraic and categorical aspects of quantales. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 5, pp. 323–362. Elsevier, Amsterdam (2008)Google Scholar
  11. 11.
    Kruml, D., Paseka, J.: Embeddings of quantales into simple quantales. J. Pure Appl. Algebra 148(2), 209–424 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mulvey, C.J.:&. In: Second Topology Conference, Taormina, 4–7 April, 1984, Suppl. Rend. Circ. Mat. Palermo Ser. II, 12, 99–104 (1986)Google Scholar
  13. 13.
    Mulvey, C.J., Pelletier, J.W.: A quantisation of the calculus of relations. Categ. Theory 13, 345–360 (1991)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Pan, F.F., Han, S.W.: Free \(Q\)-algebras. Fuzzy Sets Syst. 247, 138–150 (2014)CrossRefzbMATHGoogle Scholar
  15. 15.
    Paseka, J.: Quantale modules. Habilitation Thesis, Department of Mathematics, Faculty of Science, Masaryk University, Brno, June (1999)Google Scholar
  16. 16.
    Resende, P.: Quantales, finite observation and strong bismulation. Theor. Comput. Sci. 254, 95–149 (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Rosenthal, K.I.: Quantales and Their Applications. Longman Scientific and Technical, New York (1990)zbMATHGoogle Scholar
  18. 18.
    Rosenthal, K.I.: Modules over a quantale and models for the operator ! in linear logic. Cah. Topologie Géom. Différ. Catég. 35, 329–333 (1994)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Russo, C.: Quantale Modules, with Applications to Logic and Image Processing. PhD Thesis, Salerno: University of Salerno (2007)Google Scholar
  20. 20.
    Solovyov, S.A.: A representation theorem for quantale algebras. Contrib. Gen. Algebra 18, 189–198 (2008)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Solovyov, S.A.: On the category \(Q\)-Mod. Algebra Univers. 58, 35–58 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Solovyov, S.A.: From quantale algebroids to topological spaces: fixed- and variable-basis approaches. Fuzzy Sets Syst. 161, 1270–1287 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Valentini, S.: Representation theorems for quantales. Math. Log. Q. 40(2), 182–190 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, K.Y.: Some Researches on Fuzzy Domains and Fuzzy Quantales. PhD Thesis, Department of Mathematics, Shaanxi Normal University (2012)Google Scholar
  25. 25.
    Wang, K.Y., Zhao, B.: On embeddings of \(Q\)-algebras. Houston J. Math. 42(1), 73–90 (2016)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Wang, R., Zhao, B.: Quantale algebra and its algebraic ideal. Fuzzy Syst. Math. 24(2), 44–49 (2010)Google Scholar
  27. 27.
    Yao, W.: A survey of fuzzifications of frames, the Papert–Papert–Isbell adjunction and sobriety. Fuzzy Sets Syst. 190, 63–81 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Yetter, D.N.: Quantales and (noncommutative) linear logic. J. Symb. Log. 55(1), 41–64 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsShaanxi Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations