Abstract
Q-algebras generalize quantales and Q-modules, and play an important role in the study of lattice-valued quantales, lattice-valued frames and stratified lattice-valued topological spaces. Motivated by representation theorems of quantales, we provide three new representation theorems of Q-algebras.
Keywords
Complete lattice Quantale Q-algebra Nucleus Module relation Q-module homomorphismNotes
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 11531009) and the Fundamental Research Funds for the Central Universities (GK201501001). We also wish to express our sincere thanks to the anonymous referees for their useful suggestions and valuable comments which helped to improve the quality of the results.
References
- 1.Abramsky, S., Vickers, S.: Quantale, observational logic and process semantics. Math. Struct. Comput. Sci. 3(2), 161–227 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Birkhoff, G.: Lattice Theory. American Mathematical Society, New York (1940)zbMATHGoogle Scholar
- 3.Brown, C., Gurr, D.: A representation theorem for quantales. J. Pure Appl. Algebra 85, 27–42 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Brown, C., Gurr, D.: Relations and non-commutative linear logic. J. Pure Appl. Algebra 105(2), 117–136 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Han, S.W., Zhao, B.: \(Q\)-fuzzy subsets on ordered semigroups. Fuzzy Sets Syst. 210(1), 102–116 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Han, S.W., Zhao, B.: On the power-set \(Q\)-algebras. Semigroup Forum 92(1), 214–227 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Han, S.W., Pan, F.F.: On the homomorphisms of power-set \(Q\)-algebras. Semigroup Forum 94(1), 80–92 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Hoare, C.A.R., He, J.: A weakest pre-specification. Inf. Process. Lett. 24, 127–132 (1987)CrossRefGoogle Scholar
- 10.Kruml, D., Paseka, J.: Algebraic and categorical aspects of quantales. In: Hazewinkel, M. (ed.) Handbook of Algebra, vol. 5, pp. 323–362. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
- 11.Kruml, D., Paseka, J.: Embeddings of quantales into simple quantales. J. Pure Appl. Algebra 148(2), 209–424 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Mulvey, C.J.:&. In: Second Topology Conference, Taormina, 4–7 April, 1984, Suppl. Rend. Circ. Mat. Palermo Ser. II, 12, 99–104 (1986)Google Scholar
- 13.Mulvey, C.J., Pelletier, J.W.: A quantisation of the calculus of relations. Categ. Theory 13, 345–360 (1991)MathSciNetzbMATHGoogle Scholar
- 14.Pan, F.F., Han, S.W.: Free \(Q\)-algebras. Fuzzy Sets Syst. 247, 138–150 (2014)CrossRefzbMATHGoogle Scholar
- 15.Paseka, J.: Quantale modules. Habilitation Thesis, Department of Mathematics, Faculty of Science, Masaryk University, Brno, June (1999)Google Scholar
- 16.Resende, P.: Quantales, finite observation and strong bismulation. Theor. Comput. Sci. 254, 95–149 (2001)CrossRefzbMATHGoogle Scholar
- 17.Rosenthal, K.I.: Quantales and Their Applications. Longman Scientific and Technical, New York (1990)zbMATHGoogle Scholar
- 18.Rosenthal, K.I.: Modules over a quantale and models for the operator ! in linear logic. Cah. Topologie Géom. Différ. Catég. 35, 329–333 (1994)MathSciNetzbMATHGoogle Scholar
- 19.Russo, C.: Quantale Modules, with Applications to Logic and Image Processing. PhD Thesis, Salerno: University of Salerno (2007)Google Scholar
- 20.Solovyov, S.A.: A representation theorem for quantale algebras. Contrib. Gen. Algebra 18, 189–198 (2008)MathSciNetzbMATHGoogle Scholar
- 21.Solovyov, S.A.: On the category \(Q\)-Mod. Algebra Univers. 58, 35–58 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Solovyov, S.A.: From quantale algebroids to topological spaces: fixed- and variable-basis approaches. Fuzzy Sets Syst. 161, 1270–1287 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Valentini, S.: Representation theorems for quantales. Math. Log. Q. 40(2), 182–190 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Wang, K.Y.: Some Researches on Fuzzy Domains and Fuzzy Quantales. PhD Thesis, Department of Mathematics, Shaanxi Normal University (2012)Google Scholar
- 25.Wang, K.Y., Zhao, B.: On embeddings of \(Q\)-algebras. Houston J. Math. 42(1), 73–90 (2016)MathSciNetzbMATHGoogle Scholar
- 26.Wang, R., Zhao, B.: Quantale algebra and its algebraic ideal. Fuzzy Syst. Math. 24(2), 44–49 (2010)Google Scholar
- 27.Yao, W.: A survey of fuzzifications of frames, the Papert–Papert–Isbell adjunction and sobriety. Fuzzy Sets Syst. 190, 63–81 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Yetter, D.N.: Quantales and (noncommutative) linear logic. J. Symb. Log. 55(1), 41–64 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019