Semigroup Forum

, Volume 98, Issue 2, pp 369–397 | Cite as

Inverse monoids associated with the complexity class NP

  • J. C. BirgetEmail author


We study the P versus NP problem through properties of functions and monoids, continuing the work of [3]. Here we consider inverse monoids whose properties and relationships determine whether P is different from NP, or whether injective one-way functions (with respect to worst-case complexity) exist.


Inverse monoids NP One-way functions 



I would like to thank the referee for useful remarks.


  1. 1.
    Bennett, ChH: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bennett, ChH: Time/space trade-offs for reversible computation. SIAM J. Comput. 18(4), 766–776 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Birget, J.C.: Semigroups and one-way functions. Int. J. Algebra Comput. 25(1–2), 3–36 (2015). Preprint: arXiv:1306.1447
  4. 4.
    Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, Vol. 1 (Mathematical Survey, No 7 (I)). American Mathematical Society, Providence (1961)Google Scholar
  5. 5.
    Grillet, P.A.: Semigroups, An Introduction to the Structure Theory. Marcel Dekker, New York (1995)zbMATHGoogle Scholar
  6. 6.
    Hartmanis, J.: Feasible Computations and Provable Complexity Properties, vol. 30. SIAM/CBMS-NSF Book, Philadelphia (1978)zbMATHGoogle Scholar
  7. 7.
    Hemaspaandra, L.H., Ogihara, M.: The Complexity Theory Companion. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Lawson, M.V.: Inverse Semigroups: The Theory of Partial Symmetries. World Scientific Publishing, Singapore (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    Levin, L.A.: Universal sequential search problems. Problemy Peredatshi Informatsii 9(3), 115–116 (1973)zbMATHGoogle Scholar
  10. 10.
    Levin, L.A.: Randomness conservation inequalities; information and independence in mathematical theories. Information and Control 61(1), 15–37 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applications, Springer, New York (1993, 1997, 2008)Google Scholar
  12. 12.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science, and CCIBRutgers University – CamdenCamdenUSA

Personalised recommendations