Advertisement

On the genus of a quotient of a numerical semigroup

  • Ayomikun Adeniran
  • Steve Butler
  • Colin Defant
  • Yibo Gao
  • Pamela E. Harris
  • Cyrus Hettle
  • Qingzhong Liang
  • Hayan NamEmail author
  • Adam Volk
Research Article
  • 29 Downloads

Abstract

We find a relation between the genus of a quotient of a numerical semigroup S and the genus of S itself. We use this identity to compute the genus of a quotient of S when S has embedding dimension 2. We also exhibit identities relating the Frobenius numbers and the genus of quotients of numerical semigroups that are generated by certain types of arithmetic progressions.

Keywords

Numerical semigroups Quotient of numerical semigroups Genus Frobenius numbers 

Notes

Acknowledgements

A. Adeniran, C. Defant, Y. Gao, C. Hettle, Q. Liang, H. Nam, and A. Volk were partially supported by NSF-DMS Grant #1603823 “Collaborative Research: Rocky Mountain Great Plains Graduate Research Workshops in Combinatorics” and by NSF-DMS Grant #1604458, “Collaborative Research: Rocky Mountain Great Plains Graduate Research Workshops in Combinatorics.” S. Butler and P. E. Harris were partially supported by NSA Grant #H98230-18-1-0017, “The 2018 and 2019 Rocky Mountain—Great Plains Graduate Research Workshops in Combinatorics.” C. Defant was also supported by a Fannie and John Hertz Foundation Fellowship and an NSF Graduate Research Fellowship.

References

  1. 1.
    Assi, A., García-Sánchez, P.A.: Numerical Semigroups and Applications. RSME Springer Series, vol. 1, p. xiv+106. Springer, Cham (2016)Google Scholar
  2. 2.
    Davison, J.L.: On the linear Diophantine problem of Frobenius. J. Number Theory 48, 353–363 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Delgado, M., García-Sánchez, P.A., Rosales, J.C.: Numerical Semigroups Problem List. arXiv:1304.6552
  4. 4.
    Gu, Z., Tang, X.: The doubles of one half of a numerical semigroup. J. Number Theory 163, 375–384 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mehta, R., Saha, J., Sengupta, I.: Numerical Semigroups Generated by Concatenation of Two Arithmetic Sequences. arXiv:1802.02564
  6. 6.
    Moscariello, A.: Generators of a Fraction of a Numerical Semigroup. arXiv:1402.4905
  7. 7.
    Moscariello, A.: The first elements of the quotient of a numerical semigroup by a positive integer. Semigroup Forum 90, 126–134 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Moscariello, A.: Minimal Relations and the Diophantine Frobenius Problem in Embedding Dimension Three. arXiv:1608.06137
  9. 9.
    Numata, T.: Numerical semigroups generated by arithmetic sequences. In: Proceedings of the Institute of Natural Sciences, Nihon University, vol. 49 (2014)Google Scholar
  10. 10.
    Omidali, M., Rahmati, F.: On the type and the minimal presentation of certain numerical semigroups. Commun. Algebra 37, 1275–1283 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Robles, A.M., Rosales, J.C.: Equivalent proportionally modular Diophantine inequalities. Arch. Math. 90, 24–30 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rosales, J.C., Urbano, J.M.: Proportionally modular Diophantine inequalities and full semigroups. Semigroup Forum 72, 362–374 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rosales, J.C., García-Sánchez, P.: The quotient of a numerical semigroup by a positive integer. In: Numerical Semigroups. Developments in Mathematics (Diophantine Approximation: Festschrift for Wolfgang Schmidt), vol .20. Springer, New YorkGoogle Scholar
  14. 14.
    Strazzanti, F.: Minimal genus of a multiple and Frobenius number of a quotient of a numerical semigroup. Int. J. Algebra Comput. 25, 1043–1053 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sylvester, J.J.: Excursus on rational fractions and partitions. Am. J. Math. 5, 111–136 (1882)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ayomikun Adeniran
    • 1
  • Steve Butler
    • 2
  • Colin Defant
    • 3
  • Yibo Gao
    • 4
  • Pamela E. Harris
    • 5
  • Cyrus Hettle
    • 6
  • Qingzhong Liang
    • 7
  • Hayan Nam
    • 8
    Email author
  • Adam Volk
    • 9
  1. 1.Department of MathematicsTexas A&M UniversityCollege StationUSA
  2. 2.Department of MathematicsIowa State UniversityAmesUSA
  3. 3.Department of MathematicsPrinceton UniversityPrincetonUSA
  4. 4.Department of MathematicsMITCambridgeUSA
  5. 5.Department of Mathematics and StatisticsWilliams CollegeWilliamstownUSA
  6. 6.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  7. 7.Department of MathematicsDuke UniversityDurhamUSA
  8. 8.Department of MathematicsUniversity of California, IrvineIrvineUSA
  9. 9.Department of MathematicsUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations