Semigroups of rectangular matrices under a sandwich operation
- 115 Downloads
Abstract
Let \({\mathcal {M}}_{mn}={\mathcal {M}}_{mn}({\mathbb {F}})\) denote the set of all \(m\times n\) matrices over a field \({\mathbb {F}}\), and fix some \(n\times m\) matrix \(A\in {\mathcal {M}}_{nm}\). An associative operation \(\star \) may be defined on \({\mathcal {M}}_{mn}\) by \(X\star Y=XAY\) for all \(X,Y\in {\mathcal {M}}_{mn}\), and the resulting sandwich semigroup is denoted \({\mathcal {M}}_{mn}^A={\mathcal {M}}_{mn}^A({\mathbb {F}})\). These semigroups are closely related to Munn rings, which are fundamental tools in the representation theory of finite semigroups. We study \({\mathcal {M}}_{mn}^A\) as well as its subsemigroups \(\hbox {Reg}({\mathcal {M}}_{mn}^A)\) and \({\mathcal {E}}_{mn}^A\) (consisting of all regular elements and products of idempotents, respectively), and the ideals of \(\hbox {Reg}({\mathcal {M}}_{mn}^A)\). Among other results, we characterise the regular elements; determine Green’s relations and preorders; calculate the minimal number of matrices (or idempotent matrices, if applicable) required to generate each semigroup we consider; and classify the isomorphisms between finite sandwich semigroups \({\mathcal {M}}_{mn}^A({\mathbb {F}}_1)\) and \({\mathcal {M}}_{kl}^B({\mathbb {F}}_2)\). Along the way, we develop a general theory of sandwich semigroups in a suitably defined class of partial semigroups related to Ehresmann-style “arrows only” categories; we hope this framework will be useful in studies of sandwich semigroups in other categories. We note that all our results have applications to the variants \({\mathcal {M}}_n^A\) of the full linear monoid \({\mathcal {M}}_n\) (in the case \(m=n\)), and to certain semigroups of linear transformations of restricted range or kernel (in the case that \(\hbox {rank}(A)\) is equal to one of m, n).
Keywords
Matrix semigroups Sandwich semigroups Variants Idempotents Generators Rank Idempotent rank Munn rings Generalised matrix algebrasNotes
Acknowledgements
The first named author gratefully acknowledges the support of Grant No. 174019 of the Ministry of Education, Science, and Technological Development of the Republic of Serbia. The authors wish to thank Dr. Attila Egri-Nagy and Dr. James Mitchell for constructing the GAP [67] code that enabled us to produce the egg-box diagrams from Figs. 3, 4, 5, 7 and 8.
References
- 1.Almeida, J., Margolis, S., Steinberg, B., Volkov, M.: Representation theory of finite semigroups, semigroup radicals and formal language theory. Trans. Am. Math. Soc. 361(3), 1429–1461 (2009)MathSciNetMATHCrossRefGoogle Scholar
- 2.Araújo, J., Mitchell, J.D.: An elementary proof that every singular matrix is a product of idempotent matrices. Am. Math. Mon. 112(7), 641–645 (2005)MathSciNetMATHCrossRefGoogle Scholar
- 3.Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. Math. (2) 38(4), 857–872 (1937)MathSciNetMATHCrossRefGoogle Scholar
- 4.Breuer, T., Guralnick, R.M., Kantor, W.M.: Probabilistic generation of finite simple groups. II. J. Algebra 320(2), 443–494 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 5.Brown, W.P.: Generalized matrix algebras. Can. J. Math. 7, 188–190 (1955)MathSciNetMATHCrossRefGoogle Scholar
- 6.Brown, W.P.: The semisimplicity of \(\omega _f^n\). Ann. Math. 2(63), 324–335 (1956)CrossRefGoogle Scholar
- 7.Chanmuang, P., Chinram, R.: Some remarks on regularity of generalized transformation semigroups. Int. J. Algebra 2(9–12), 581–584 (2008)MathSciNetMATHGoogle Scholar
- 8.Chase, K.: Sandwich semigroups of binary relations. Discrete Math. 28(3), 231–236 (1979)MathSciNetMATHCrossRefGoogle Scholar
- 9.Chinram, R.: Regularity and Green’s relations of generalized one-to-one partial transformation semigroups. Far East J. Math. Sci. 30(3), 513–521 (2008)MathSciNetMATHGoogle Scholar
- 10.Chinram, R.: Regularity and Green’s relations of generalized partial transformation semigroups. Asian Eur. J. Math. 1(3), 295–302 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 11.Chinram, R.: Green’s relations and regularity of generalized semigroups of linear transformations. Lobachevskii J. Math. 30(4), 253–256 (2009)MathSciNetMATHCrossRefGoogle Scholar
- 12.Clifford, A.H.: Matrix representations of completely simple semigroups. Am. J. Math. 64, 327–342 (1942)MathSciNetMATHCrossRefGoogle Scholar
- 13.Clifford, A.H.: Basic representations of completely simple semigroups. Am. J. Math. 82, 430–434 (1960)MathSciNetMATHCrossRefGoogle Scholar
- 14.Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups. Vol. I. Mathematical Surveys, No. 7. American Mathematical Society, Providence, RI (1961)MATHGoogle Scholar
- 15.Dawlings, R.J.H.: Products of idempotents in the semigroup of singular endomorphisms of a finite-dimensional vector space. Proc. R. Soc. Edinb. Sect. A 91(1–2), 123–133 (1981/1982)Google Scholar
- 16.Dawlings, R.J.H.: Sets of idempotents that generate the semigroup of singular endomorphisms of a finite-dimensional vector space. Proc. Edinb. Math. Soc. (2) 25(2), 133–139 (1982)MathSciNetMATHCrossRefGoogle Scholar
- 17.Dieudonné, J.A.: La géométrie des groupes classiques (in French). Springer, Berlin. Troisième édition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 5 (1971)Google Scholar
- 18.Djoković, D.Ž.: Note on a theorem on singular matrices. Can. Math. Bull. 11, 283–284 (1968)MathSciNetCrossRefGoogle Scholar
- 19.Dolinka, I., East, J.: Variants of finite full transformation semigroups. Int. J. Algebra Comput. 25(8), 1187–1222 (2015)MathSciNetMATHCrossRefGoogle Scholar
- 20.Dolinka, I., Gray, R.D.: Maximal subgroups of free idempotent generated semigroups over the full linear monoid. Trans. Am. Math. Soc. 366(1), 419–455 (2014)MathSciNetMATHCrossRefGoogle Scholar
- 21.Du, J., Lin, Z.: Stratifying algebras with near-matrix algebras. J. Pure Appl. Algebra 188(1–3), 59–72 (2004)MathSciNetMATHCrossRefGoogle Scholar
- 22.Easdown, D., Lavers, T.G.: The inverse braid monoid. Adv. Math. 186(2), 438–455 (2004)MathSciNetMATHCrossRefGoogle Scholar
- 23.East, J., Mitchell, J.D., Péresse, Y.: Maximal subsemigroups of the semigroup of all mappings on an infinite set. Trans. Am. Math. Soc. 367(3), 1911–1944 (2015)MathSciNetMATHCrossRefGoogle Scholar
- 24.Ehresmann, C.: Catégories et Structures (in French). Dunod, Paris (1965)MATHGoogle Scholar
- 25.Erdos, J.A.: On products of idempotent matrices. Glasg. Math. J. 8, 118–122 (1967)MathSciNetMATHCrossRefGoogle Scholar
- 26.FitzGerald, D.G., Leech, J.: Dual symmetric inverse monoids and representation theory. J. Aust. Math. Soc. Ser. A 64(3), 345–367 (1998)MathSciNetMATHCrossRefGoogle Scholar
- 27.Fountain, J., Lewin, A.: Products of idempotent endomorphisms of an independence algebra of finite rank. Proc. Edinb. Math. Soc. (2) 35(3), 493–500 (1992)MathSciNetMATHCrossRefGoogle Scholar
- 28.Ganyushkin, O., Mazorchuk, V.: Classical Finite Transformation Semigroups, an Introduction, Algebra and Applications, vol. 9. Springer, London (2009)MATHGoogle Scholar
- 29.Ganyushkin, O., Mazorchuk, V., Steinberg, B.: On the irreducible representations of a finite semigroup. Proc. Am. Math. Soc. 137(11), 3585–3592 (2009)MathSciNetMATHCrossRefGoogle Scholar
- 30.Gavarini, F.: On the radical of Brauer algebras. Math. Z. 260(3), 673–697 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 31.Gill, N.: On a conjecture of Degos. Cah. Topol. Géom. Différ. Catég. 57(3), 229–237 (2016)MathSciNetMATHGoogle Scholar
- 32.Gomes, G., Howie, J.M.: On the ranks of certain finite semigroups of transformations. Math. Proc. Camb. Philos. Soc. 101(3), 395–403 (1987)MathSciNetMATHCrossRefGoogle Scholar
- 33.Gray, R.: Hall’s condition and idempotent rank of ideals of endomorphism monoids. Proc. Edinb. Math. Soc. (2) 51(1), 57–72 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 34.Gray, R., Ruškuc, N.: Maximal subgroups of free idempotent-generated semigroups over the full transformation monoid. Proc. Lond. Math. Soc. (3) 104(5), 997–1018 (2012)MathSciNetMATHCrossRefGoogle Scholar
- 35.Guay, N., Wilcox, S.: Almost cellular algebras. J. Pure Appl. Algebra 219(9), 4105–4116 (2015)MathSciNetMATHCrossRefGoogle Scholar
- 36.Guralnick, R.M., Kantor, W.M.: Probabilistic generation of finite simple groups. J. Algebra 234(2), 743–792 (2000). (Special issue in honor of Helmut Wielandt)MathSciNetMATHCrossRefGoogle Scholar
- 37.Hall, T.E.: The radical of the algebra of any finite semigroup over any field. J. Aust. Math. Soc. 11, 350–352 (1970)MathSciNetMATHCrossRefGoogle Scholar
- 38.Hickey, J.B.: Semigroups under a sandwich operation. Proc. Edinb. Math. Soc. (2) 26(3), 371–382 (1983)MathSciNetMATHCrossRefGoogle Scholar
- 39.Hickey, J.B.: On variants of a semigroup. Bull. Aust. Math. Soc. 34(3), 447–459 (1986)MathSciNetMATHCrossRefGoogle Scholar
- 40.Higgins, P.M.: Techniques of Semigroup Theory. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1992)MATHGoogle Scholar
- 41.Hollings, C.: The Ehresmann–Schein–Nambooripad theorem and its successors. Eur. J. Pure Appl. Math. 5(4), 414–450 (2012)MathSciNetMATHGoogle Scholar
- 42.Howie, J.M.: The subsemigroup generated by the idempotents of a full transformation semigroup. J. Lond. Math. Soc. 41, 707–716 (1966)MathSciNetMATHCrossRefGoogle Scholar
- 43.Howie, J.M.: Idempotent generators in finite full transformation semigroups. Proc. R. Soc. Edinb. Sect. A 81(3–4), 317–323 (1978)MathSciNetMATHCrossRefGoogle Scholar
- 44.Howie, J.M.: Fundamentals of semigroup theory. In: London Mathematical Society Monographs. New Series, vol. 12. The Clarendon Press, Oxford University Press. Oxford Science Publications, New York (1995)Google Scholar
- 45.Howie, J.M., McFadden, R.B.: Idempotent rank in finite full transformation semigroups. Proc. R. Soc. Edinb. Sect. A 114(3–4), 161–167 (1990)MathSciNetMATHCrossRefGoogle Scholar
- 46.Howie, J.M., Ruškuc, N., Higgins, P.M.: On relative ranks of full transformation semigroups. Commun. Algebra 26(3), 733–748 (1998)MathSciNetMATHCrossRefGoogle Scholar
- 47.Izhakian, Z., Rhodes, J., Steinberg, B.: Representation theory of finite semigroups over semirings. J. Algebra 336, 139–157 (2011)MathSciNetMATHCrossRefGoogle Scholar
- 48.Jongchotinon, R., Chaopraknoi, S., Kemprasit, Y.: Isomorphism theorems for variants of semigroups of linear transformations. Int. J. Algebra 4(25–28), 1407–1412 (2010)MathSciNetMATHGoogle Scholar
- 49.Kemprasit, Y.: Regularity and unit-regularity of generalized semigroups of linear transformations. Southeast Asian Bull. Math. 25(4), 617–622 (2002)MathSciNetMATHCrossRefGoogle Scholar
- 50.Khan, T.A., Lawson, M.V.: Variants of regular semigroups. Semigroup Forum 62(3), 358–374 (2001)MathSciNetMATHCrossRefGoogle Scholar
- 51.König, S., Xi, C.: On the structure of cellular algebras. In: CMS Conference Proceedings of the Algebras and Modules, II (Geiranger, 1996), vol. 24, pp. 365–386. American Mathematical Society, Providence, RI (1998)Google Scholar
- 52.König, S., Xi, C.: A characteristic free approach to Brauer algebras. Trans. Am. Math. Soc. 353(4), 1489–1505 (2001)MathSciNetMATHCrossRefGoogle Scholar
- 53.Laffey, T.J.: Products of idempotent matrices. Linear Multilinear Algebra 14(4), 309–314 (1983)MathSciNetMATHCrossRefGoogle Scholar
- 54.Lallement, G., Petrich, M.: Irreducible matrix representations of finite semigroups. Trans. Am. Math. Soc. 139, 393–412 (1969)MathSciNetMATHCrossRefGoogle Scholar
- 55.Li, Y., Wei, F.: Semi-centralizing maps of generalized matrix algebras. Linear Algebra Appl. 436(5), 1122–1153 (2012)MathSciNetMATHCrossRefGoogle Scholar
- 56.Linckelmann, M., Stolorz, M.: On simple modules over twisted finite category algebras. Proc. Am. Math. Soc. 140(11), 3725–3737 (2012)MathSciNetMATHCrossRefGoogle Scholar
- 57.Lyapin, E.S.: Semigroups. Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow (1960). (in Russian)MATHGoogle Scholar
- 58.Magill Jr., K.D.: Semigroup structures for families of functions. I. Some homomorphism theorems. J. Aust. Math. Soc. 7, 81–94 (1967)MathSciNetMATHCrossRefGoogle Scholar
- 59.Magill Jr., K.D., Subbiah, S.: Green’s relations for regular elements of sandwich semigroups. I. General results. Proc. Lond. Math. Soc. (3) 31(2), 194–210 (1975)MathSciNetMATHCrossRefGoogle Scholar
- 60.Magill Jr., K.D., Subbiah, S.: Green’s relations for regular elements of sandwich semigroups. II. Semigroups of continuous functions. J. Aust. Math. Soc. Ser. A 25(1), 45–65 (1978)MathSciNetMATHCrossRefGoogle Scholar
- 61.Martin, P.: Temperley–Lieb algebras for nonplanar statistical mechanics: the partition algebra construction. J. Knot Theory Ramif. 3(1), 51–82 (1994)MathSciNetMATHCrossRefGoogle Scholar
- 62.McAlister, D.B.: The category of representations of a completely \(0\)-simple semigroup. J. Aust. Math. Soc. 12, 193–210 (1971)MathSciNetMATHCrossRefGoogle Scholar
- 63.McAlister, D.B.: Representations of semigroups by linear transformations. I, II. Semigroup Forum 2 3, 189–263; ibid. 2(4), 283–320 (1971)Google Scholar
- 64.McAlister, D.B.: Rings related to completely \(0\)-simple semigroups. J. Aust. Math. Soc. 12, 257–274 (1971)MathSciNetMATHCrossRefGoogle Scholar
- 65.Mendes-Gonçalves, S., Sullivan, R.P.: Regular elements and Green’s relations in generalized transformation semigroups. Asian Eur. J. Math. 6(1), 1350006 (2013)MathSciNetMATHCrossRefGoogle Scholar
- 66.Mendes-Gonçalves, S., Sullivan, R.P.: Regular elements and Green’s relations in generalised linear transformation semigroups. Southeast Asian Bull. Math. 38(1), 73–82 (2014)MathSciNetMATHGoogle Scholar
- 67.Mitchell, J.D., et al.: Semigroups: GAP package, Version 2.8.0 (2016). doi: 10.5281/zenodo.53112
- 68.Munn, W.D.: On semigroup algebras. Proc. Camb. Philos. Soc. 51, 1–15 (1955)MATHCrossRefGoogle Scholar
- 69.Munn, W.D.: Matrix representations of semigroups. Proc. Camb. Philos. Soc. 53, 5–12 (1957)MathSciNetMATHCrossRefGoogle Scholar
- 70.Munn, W.D.: Irreducible matrix representations of semigroups. Q. J. Math. Oxf. Ser. 2(11), 295–309 (1960)MathSciNetMATHCrossRefGoogle Scholar
- 71.Nagy, A.: Special Classes of Semigroups, Advances in Mathematics (Dordrecht), vol. 1. Kluwer Academic Publishers, Dordrecht (2001)CrossRefGoogle Scholar
- 72.Nenthein, S., Kemprasit, Y.: Regular elements of some semigroups of linear transformations and matrices. Int. Math. Forum 2(1–4), 155–166 (2007)MathSciNetMATHCrossRefGoogle Scholar
- 73.Okniński, J.: Semigroup Algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 138. Marcel Dekker Inc, New York (1991)Google Scholar
- 74.Okniński, J.: Semigroups of Matrices, Series in Algebra, vol. 6. World Scientific Publishing Co., Inc, River Edge (1998)MATHCrossRefGoogle Scholar
- 75.Okniński, J., Putcha, M.S.: Complex representations of matrix semigroups. Trans. Am. Math. Soc. 323(2), 563–581 (1991)MathSciNetMATHCrossRefGoogle Scholar
- 76.Ponizovskiĭ, I.S.: On matrix representations of associative systems. Mat. Sb. N.S. 38(80), 241–260 (1956)MathSciNetGoogle Scholar
- 77.Putcha, M.S.: Linear Algebraic Monoids, London Mathematical Society Lecture Note Series, vol. 133. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
- 78.Putcha, M.S.: Complex representations of finite monoids. Proc. Lond. Math. Soc. (3) 73(3), 623–641 (1996)MathSciNetMATHCrossRefGoogle Scholar
- 79.Putcha, M.S.: Complex representations of finite monoids. II. Highest weight categories and quivers. J. Algebra 205(1), 53–76 (1998)MathSciNetMATHCrossRefGoogle Scholar
- 80.Putcha, M.S.: Products of idempotents in algebraic monoids. J. Aust. Math. Soc. 80(2), 193–203 (2006)MathSciNetMATHCrossRefGoogle Scholar
- 81.Rees, D.: On semi-groups. Proc. Camb. Philos. Soc. 36, 387–400 (1940)MATHCrossRefGoogle Scholar
- 82.Renner, L.E.: Linear algebraic monoids. In: Encyclopaedia of Mathematical Sciences, vol. 134. Springer, Berlin (2005). (Invariant Theory and Algebraic Transformation Groups, V) Google Scholar
- 83.Rhodes, J., Steinberg, B.: The \(q\)-Theory of Finite Semigroups. Springer Monographs in Mathematics. Springer, New York (2009)MATHCrossRefGoogle Scholar
- 84.Ruškuc, N.: On the rank of completely \(0\)-simple semigroups. Math. Proc. Camb. Philos. Soc. 116(2), 325–338 (1994)MathSciNetMATHCrossRefGoogle Scholar
- 85.Steinberg, B.: Möbius functions and semigroup representation theory. J. Comb. Theory Ser. A 113(5), 866–881 (2006)MATHCrossRefGoogle Scholar
- 86.Steinberg, B.: Möbius functions and semigroup representation theory. II. Character formulas and multiplicities. Adv. Math. 217(4), 1521–1557 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 87.Steinberg, B.: Representation theory of finite monoids. Universitext. Springer, Cham (2016)MATHCrossRefGoogle Scholar
- 88.Sullivan, R.P.: Generalised partial transformation semigroups. J. Aust. Math. Soc. 19(Part 4), 470–473 (1975)MathSciNetMATHCrossRefGoogle Scholar
- 89.Sullivan, R.P.: Semigroups of linear transformations with restricted range. Bull. Aust. Math. Soc. 77(3), 441–453 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 90.Sullivan, R.P.: Generalised transformation semigroups. Preprint (2013)Google Scholar
- 91.Thornton, M.C.: Regular elements in sandwich semigroups of binary relations. Discrete Math. 41(3), 303–307 (1982)MathSciNetMATHCrossRefGoogle Scholar
- 92.Thrall, R.M.: A class of algebras without unity element. Can. J. Math. 7, 382–390 (1955)MathSciNetMATHCrossRefGoogle Scholar
- 93.Wasanawichit, A., Kemprasit, Y.: Dense subsemigroups of generalised transformation semigroups. J. Aust. Math. Soc. 73(3), 433–445 (2002)MathSciNetMATHCrossRefGoogle Scholar
- 94.Waterhouse, W.C.: Two generators for the general linear groups over finite fields. Linear Multilinear Algebra 24(4), 227–230 (1989)MathSciNetMATHCrossRefGoogle Scholar
- 95.Weyl, H.: The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton (1939)MATHGoogle Scholar
- 96.Xiao, Z., Wei, F.: Commuting mappings of generalized matrix algebras. Linear Algebra Appl. 433(11–12), 2178–2197 (2010)MathSciNetMATHCrossRefGoogle Scholar
- 97.Xiao, Z., Wei, F.: Commuting traces and Lie isomorphisms on generalized matrix algebras. Oper. Matrices 8(3), 821–847 (2014)MathSciNetMATHCrossRefGoogle Scholar
- 98.Yamada, M.: A note on middle unitary semigroups. Kōdai Math. Sem. Rep. 7, 49–52 (1955)MathSciNetMATHCrossRefGoogle Scholar