The Journal of Membrane Biology

, Volume 253, Issue 1, pp 1–10 | Cite as

Effect of Triclosan on the Functioning of Liver Mitochondria and Permeability of Erythrocyte Membranes of Marsh Frog (Pelophylax ridibundus (Pallas, 1771))

  • Mikhail V. DubininEmail author
  • Kirill S. Tenkov
  • Anton O. Svinin
  • Victor N. Samartsev
  • Konstantin N. Belosludtsev


The paper examines the effects of the antimicrobial agent triclosan on the functioning of the liver mitochondria of marsh frog (Pelophylax ridibundus (Pallas, 1771)). It was established that triclosan inhibits DNP-stimulated respiration of mitochondria and decreases respiratory control ratio. In addition, triclosan causes the collapse of the mitochondrial membrane potential on both types of substrates. Such an action of triclosan can be mediated by both a protonophore effect and suppression of the activity of complex II and combined activity of complexes II + III (and, to a lesser degree, the combined activity of complexes I + III) of the mitochondrial respiratory chain. It is shown that high concentrations of triclosan enhance the production of hydrogen peroxide during the oxidation of substrates of the complex I by mitochondria, and decrease it in the case of succinate oxidation. It is found that triclosan is able to induce nonspecific permeability of the liver mitochondria of these amphibians, as well as the plasma membrane of erythrocytes. The possible mechanisms of triclosan effect on marsh frog liver mitochondria and red blood cells are discussed.

Graphic Abstract


Triclosan Toxicology Mitochondria Pelophylax ridibundus Erythrocytes Membrane permeability 







Mitochondrial permeability transition


Red blood cells



The study was supported by grants from the Russian Foundation for Basic Research (18-315-00033) and the Ministry of Science and Higher Education of the Russian Federation (17.4999.2017/8.9 and 6.5170.2017/8.9).


  1. Ajao C, Andersson MA, Teplova VV, Nagy S, Gahmberg CG, Andersson LC, Hautaniemi M, Kakasi B, Roivainen M, Salkinoja-Salonen M (2015) Mitochondrial toxicity of triclosan on mammalian cells. Toxicol Rep 2:624–637CrossRefGoogle Scholar
  2. Belosludtsev KN, Belosludtseva NV, Tenkov KS, Penkov NV, Agafonov AV, Pavlik LL, Yashin VA, Samartsev VN, Dubinin MV (2018) Study of the mechanism of permeabilization of lecithin liposomes and rat liver mitochondria by the antimicrobial drug triclosan. Biochim Biophys Acta 1860(2):264–271CrossRefGoogle Scholar
  3. Belosludtsev KN, Penkov NV, Tenkov KS, Talanov EY, Belosludtseva NV, Agafonov AV, Stepanova AE, Starinets VS, Vashchenko OV, Gudkov SV, Dubinin MV (2019) Interaction of the anti-tuberculous drug bedaquiline with artificial membranes and rat erythrocytes. Chem Biol Interact 299:8–14CrossRefGoogle Scholar
  4. Chance B, Williams GR (1955) A method for the localization of sites for oxidative phosphorylation. Nature 176(4475):250–254CrossRefGoogle Scholar
  5. Cherednichenko G, Zhang R, Bannister RA, Timofeyev V, Li N, Fritsch EB, Feng W, Barrientos GC, Schebb NH, Hammock BD, Beam KG, Chiamvimonvat N, Pessah IN (2012) Triclosan impairs excitation-contraction coupling and Ca2+ dynamics in striated muscle. Proc Natl Acad Sci USA 109(35):14158–14163CrossRefGoogle Scholar
  6. Dhillon GS, Kau S, Pulicharla R, Brar SK, Cledón M, Verma M, Surampalli RY (2015) Triclosan: current status, occurrence, environmental risks and bioaccumulation potential. Environ Res Public Health 12(5):5657–5684CrossRefGoogle Scholar
  7. Dubinin MV, Svinin AO, Vedernikov AA, Starinets VS, Tenkov KS, Belosludtsev KN, Samartsev VN (2019) Effect of hypothermia on the functional activity of liver mitochondria of grass snake (Natrix natrix): inhibition of succinate-fueled respiration and K+ transport, ROS-induced activation of mitochondrial permeability transition. J Bioenerg Biomembr 3:219–229CrossRefGoogle Scholar
  8. Huang H, Du G, Zhang W, Hu J, Wu D, Song L, Xia Y, Wang X (2014) The in vitro estrogenic activities of triclosan and triclocarban. Appl Toxicol 34(9):1060–1067CrossRefGoogle Scholar
  9. Kolšek K, Gobec M, Mlinarič Raščan I, Sollner Dolenc M (2015) Screening of bisphenol A, triclosan and paraben analogues as modulators of the glucocorticoid and androgen receptor activities. Toxicol In Vitro 29(1):8–15CrossRefGoogle Scholar
  10. Lee HR, Hwang KA, Nam KH, Kim HC, Choi KC (2014) Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem Res Toxicol 27(5):834–842CrossRefGoogle Scholar
  11. Levy CW, Roujeinikova A, Sedelnikova S, Baker PJ, Stuitje AR, Slabas AR, Rice DW, Rafferty JB (1999) Molecular basis of triclosan activity. Nature 398(6726):383–384CrossRefGoogle Scholar
  12. Popova LB, Nosikova ES, Kotova EA, Tarasova EO, Nazarov PA, Khailova LS, Balezina OP, Antonenko YN (2018) Protonophoric action of triclosan causes calcium efflux from mitochondria, plasma membrane depolarization and bursts of miniature end-plate potentials. Biochim Biophys Acta 1860(5):1000–1007CrossRefGoogle Scholar
  13. Roussel D, Salin K, Dumet A, Romestaing C, Rey B, Voituron Y (2015) Oxidative phosphorylation efficiency, proton conductance and reactive oxygen species production of liver mitochondria correlates with body mass in frogs. J Exp Biol 218(20):3222–3228CrossRefGoogle Scholar
  14. Rubin RJ, Holland DR, Zhang E, Snow ME, Rock CO (1999) Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274(16):11110–11114CrossRefGoogle Scholar
  15. Smith GR, Burgett AA (2005) Effects of three organic wastewater contaminants on American toad, Bufo americanus, tadpoles. Ecotoxicology 14(4):477–482CrossRefGoogle Scholar
  16. Spinazzi M, Casarin A, Pertegato V, Salviati L, Angelini C (2012) Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc 7(6):1235–1246CrossRefGoogle Scholar
  17. Teplova VV, Belosludtsev KN, Kruglov AG (2017) Mechanism of triclosan toxicity: mitochondrial dysfunction including complex II inhibition, superoxide release and uncoupling of oxidative phosphorylation. Toxicol Lett 275:108–117CrossRefGoogle Scholar
  18. Vedernikov AA, Dubinin MV, Zabiakin VA, Samartsev VN (2015) Ca2+-dependent nonspecific permeability of the inner membrane of liver mitochondria in the guinea fowl (Numida meleagris). J Bioenerg Biomembr 47(3):235–242CrossRefGoogle Scholar
  19. Wang F, Xu R, Zheng F, Liu H (2018) Effects of triclosan on acute toxicity, genetic toxicity and oxidative stress in goldfish (Carassius auratus). Exp Anim 67(2):219–227CrossRefGoogle Scholar
  20. Weatherly LM, Gosse JA (2017) Triclosan exposure, transformation, and human health effects. J Toxicol Environ Health B 20(8):447–469CrossRefGoogle Scholar
  21. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mari State UniversityYoshkar-OlaRussia
  2. 2.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations