Differential Dynamics Underlying the Gln27Glu Population Variant of the β2-Adrenergic Receptor

  • Sumedha Bhosale
  • Siddhanta V. Nikte
  • Durba SenguptaEmail author
  • Manali JoshiEmail author
Part of the following topical collections:
  1. Membrane and Receptor Dynamics


The β2-adrenergic receptor (β2AR) is a membrane-bound G-protein-coupled receptor and an important drug target for asthma. Clinical studies report that the population variant Gln27Glu is associated with a differential response to common asthma drugs, such as albuterol, isoproterenol and terbutaline. Interestingly, the 27th amino acid is positioned on the N-terminal region that is the most flexible and consequently the least studied part of the receptor. In this study, we probe the molecular origin of the differential drug binding by performing structural modeling and simulations of the wild-type (Gln) and variant (Glu) receptors followed by ensemble docking with the ligands, albuterol, isoproterenol and terbutaline. In line with clinical studies, the ligands were observed to interact preferentially with the Glu variant. Our results indicate that the Glu residue at the 27th position perturbs the network of electrostatic interactions that connects the N-terminal region to the binding site in the wild-type receptor. As a result, the Glu variant is observed to bind better to the three ligands tested in this study. Our study provides a structural basis to explain the variable drug response associated with the 27th position polymorphism in the β2AR and is a starting step to identify genotype-specific therapeutics.


β2-Adrenergic receptor SNP Molecular dynamics G-protein-coupled receptor GPCR Pharmacogenetics 



Sumedha Bhosale acknowledges studentship received from Department of Biotechnology (DBT), India. Siddhanta V. Nikte thanks the DBT for Junior Research Fellowship. Manali Joshi thanks the Bioinformatics Centre for infrastructure support. Durba Sengupta gratefully acknowledges the project (EMR/2016/002294) from Dept. Science Technology, India.


This study was funded by EMR/2016/002294 from Dept. Science Technology, India.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

232_2019_93_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2384 kb)


  1. Ahles A, Rochais F, Frambach T, Bunemann M, Engelhardt S (2011) A polymorphism-specific “memory” mechanism in the beta(2)-adrenergic receptor. Sci Signal 4(185):ra53CrossRefGoogle Scholar
  2. Bandaru S, Alvala M, Nayarisseri A, Sharda S, Goud H, Mundluru HP, Singh SK (2017) Molecular dynamic simulations reveal suboptimal binding of salbutamol in T164I variant of beta 2 adrenergic receptor. PLoS ONE 12(10):e0186666CrossRefGoogle Scholar
  3. Bhattacharya S, Vaidehi N (2014) Differences in allosteric communication pipelines in the inactive and active states of a GPCR. Biophys J 107:422–434CrossRefGoogle Scholar
  4. Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E (2010) Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 6:459–466CrossRefGoogle Scholar
  5. Burley SK, Petsko GA (1988) Weakly polar interactions in proteins. Adv Protein Chem 39:125–189CrossRefGoogle Scholar
  6. Cazzola M, Page CP, Rogliani P, Matera MG (2013) β2-agonist therapy in lung disease. Am J Respir Crit Care Med 187:690–696CrossRefGoogle Scholar
  7. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265CrossRefGoogle Scholar
  8. Dassault Systèmes BIOVIA (2017) Discovery Studio, San DiegoGoogle Scholar
  9. Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240CrossRefGoogle Scholar
  10. Dishy V, Sofowora GG, Xie HG, Kim RB, Byrne DW, Stein CM, Wood AJ (2001) The effect of common polymorphisms of the beta2-adrenergic receptor on agonist-mediated vascular desensitization. N Engl J Med 345:1030–1035CrossRefGoogle Scholar
  11. Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Xu H, Borhani DW, Shaw DE (2011) Activation mechanism of the beta2-adrenergic receptor. Proc Natl Acad Sci USA 108:18684–18689CrossRefGoogle Scholar
  12. Durrant JD, Votapka L, Sørensen J, Amaro RE (2014) POVME 2.0: an enhanced tool for determining pocket shape and volume characteristics. J Chem Theory Comput 10:5047–5056CrossRefGoogle Scholar
  13. Emorine LJ, Marullo S, Delavier-Klutchko C, Kaveri SV, Durieu-Trautmann O, Strosberg AD (1987) Structure of the gene for human beta 2-adrenergic receptor: expression and promoter characterization. Proc Natl Acad Sci USA 84:6995–6999CrossRefGoogle Scholar
  14. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577CrossRefGoogle Scholar
  15. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272CrossRefGoogle Scholar
  16. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196CrossRefGoogle Scholar
  17. Genomes Project Consortium et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65Google Scholar
  18. Giubergia V, Gravina LP, Castanos C, Chertkoff L, Grenoville M (2008) Influence of beta 2-adrenoceptor polymorphisms on the response to chronic use of albuterol in asthmatic children. Pediatr Pulmonol 43:421–425CrossRefGoogle Scholar
  19. Green SA, Cole G, Jacinto M, Innis M, Liggett SB (1993) A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem 268:23116–23121Google Scholar
  20. Green SA, Rathz DA, Schuster AJ, Liggett SB (2001) The Ile164 beta(2)-adrenoceptor polymorphism alters salmeterol exosite binding and conventional agonist coupling to G(s). Eur J Pharmacol 421:141–147CrossRefGoogle Scholar
  21. Hilger D, Masureel M, Kobilka BK (2018) Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol 25:4–12CrossRefGoogle Scholar
  22. Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145CrossRefGoogle Scholar
  23. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27–28Google Scholar
  24. Johnson M (2006) Molecular mechanisms of beta(2)-adrenergic receptor function, response, and regulation. J Allergy Clin Immunol 117:18–24CrossRefGoogle Scholar
  25. Kharche S, Joshi M, Sengupta D, Chattopadhyay A (2018) Membrane-induced organization and dynamics of the N-terminal domain of chemokine receptor CXCR25: insights from atomistic simulations. Chem Phys Lipids 210:142–148CrossRefGoogle Scholar
  26. Kobilka BK (2007) G protein coupled receptor structure and activation. Biochimica Et Biophysica Acta-Biomembranes 1768:794–807CrossRefGoogle Scholar
  27. Kumawat A, Chakrabarty S (2017) Hidden electrostatic basis of dynamic allostery in a PDZ domain. Proc Natl Acad Sci USA 114:E5825–E5834CrossRefGoogle Scholar
  28. Laurent B, Chavent M, Cragnolini T, Dahl AC, Pasquali S, Derreumaux P, Sansom MS, Baaden M (2015) Epock: rapid analysis of protein pocket dynamics. Bioinformatics 31:1478–1480CrossRefGoogle Scholar
  29. Lee MY, Cheng SN, Chen SJ, Huang HL, Wang CC, Fan HC (2011) Polymorphisms of the β2-adrenergic receptor correlated to nocturnal asthma and the response of terbutaline nebulizer. Pediatr Neonatol 52:18–23CrossRefGoogle Scholar
  30. Lefkowitz RJ, Stadel JM, Caron MG (1983) Adenylate cyclase-coupled beta-adrenergic receptors: structure and mechanisms of activation and desensitization. Annu Rev Biochem 52:159–186CrossRefGoogle Scholar
  31. Litonjua AA, Gong L, Duan QL, Shin J, Moore MJ, Weiss ST, Johnson JA, Klein TE, Altman RB (2010) Very important pharmacogene summary ADRB2. Pharmacogenet Genomics 20:64–69CrossRefGoogle Scholar
  32. Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z, Hilger D, Lerch MT, Kobilka TS, Thian FS, Hubbell WL, Prosser RS, Kobilka BK (2015) Structural insights into the dynamic process of beta2-adrenergic receptor signaling. Cell 161:1101–1111CrossRefGoogle Scholar
  33. Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–376CrossRefGoogle Scholar
  34. Martyna GJ, Klein ML, Tuckerman M (1992) Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643CrossRefGoogle Scholar
  35. Masureel M, Zou YZ, Picard LP, van der Westhuizen E, Mahoney JP, Rodrigues JPGLM, Mildorf TJ, Dror RO, Shaw DE, Bouvier M, Pardon E, Steyaert J, Sunahara RK, Weis WI, Zhang C, Kobilka BK (2018) Structural insights into binding specificity, efficacy and bias of a beta(2)AR partial agonist. Nat Chem Biol 14:1059CrossRefGoogle Scholar
  36. Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of β(2)-adrenergic receptor activation. Cell 152(3):532–542CrossRefGoogle Scholar
  37. Park SH, Casagrande F, Cho L, Albrecht L, Opella SJ (2011) Interactions of interleukin-8 with the human chemokine receptor CXCR37 in phospholipid bilayers by NMR spectroscopy. J Mol Biol 414(2):194–203CrossRefGoogle Scholar
  38. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190CrossRefGoogle Scholar
  39. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650CrossRefGoogle Scholar
  40. Prasanna X, Chattopadhyay A, Sengupta D (2014) Cholesterol modulates the dimer interface of the β2-adrenergic receptor via cholesterol occupancy sites. Biophys J 106(6):1290–1300CrossRefGoogle Scholar
  41. Prasanna X, Chattopadhyay A, Sengupta D (2015) Role of lipid-mediated effects in β2-adrenergic receptor dimerization. Adv Exp Med Biol 842:247–261CrossRefGoogle Scholar
  42. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854CrossRefGoogle Scholar
  43. Rasmussen SGF, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishvili R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Crystal structure of the human beta(2) adrenergic G-protein-coupled receptor. Nature 450:383-U4CrossRefGoogle Scholar
  44. Reihsaus E, Innis M, Macintyre N, Liggett SB (1993) Mutations in the gene encoding for the beta-2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 8:334–339CrossRefGoogle Scholar
  45. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, Overington JP (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19–34CrossRefGoogle Scholar
  46. Sengupta D, Chattopadhyay A (2015) Molecular dynamics simulations of GPCR-cholesterol interaction: an emerging paradigm. Biochim Biophys Acta 1848(9):1775–1782CrossRefGoogle Scholar
  47. Sengupta D, Sonar K, Joshi M (2017) Characterizing clinically relevant natural variants of GPCRs using computational approaches. Methods Cell Biol 142:187–204CrossRefGoogle Scholar
  48. Sengupta D, Prasanna X, Mohole M, Chattopadhyay A (2018) Exploring GPCR-lipid interactions by molecular dynamics simulations: excitements, challenges, and the way forward. J Phys Chem B 122(22):5727–5737CrossRefGoogle Scholar
  49. Shahane G, Parsania C, Sengupta D, Joshi M (2014) Molecular insights into the dynamics of pharmacogenetically important N-terminal variants of the human beta2-adrenergic receptor. PLoS Comput Biol 10:e1004006CrossRefGoogle Scholar
  50. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucl Acids Res 29:308–311CrossRefGoogle Scholar
  51. Shukla AK, Singh G, Ghosh E (2014) Emerging structural insights into biased GPCR signaling. Trends Biochem Sci 39(12):594–602CrossRefGoogle Scholar
  52. Tandale A, Joshi M, Sengupta D (2016) Structural insights and functional implications of inter-individual variability in ß2-adrenergic receptor. Sci Rep 6:24379CrossRefGoogle Scholar
  53. Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC (2010) Conserved binding mode of human beta(2) adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 132:11443–11445CrossRefGoogle Scholar
  54. Wang T, Duan Y (2009) Ligand entry and exit pathways in the (b2)-adrenergic receptor. J Mol Biol 392(4):1102–1115CrossRefGoogle Scholar
  55. Weichert D, Kruse AC, Manglik A, Hiller C, Zhang C, Hubner H, Kobilka BK, Gmeiner P (2014) Covalent agonists for studying G protein-coupled receptor activation. Proc Natl Acad Sci USA 111:10744–10748CrossRefGoogle Scholar
  56. Wootten D, Christopoulos A, Marti-Solano M, Babu MM, Sexton PM (2018) Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat Rev Mol Cell Biol 19:638–653CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Bioinformatics CentreS. P. UniversityPuneIndia
  2. 2.Physical Chemistry DivisionNational Chemical LaboratoryPuneIndia

Personalised recommendations