Advertisement

The Journal of Membrane Biology

, Volume 252, Issue 4–5, pp 213–226 | Cite as

Membrane Dynamics in Health and Disease: Impact on Cellular Signalling

  • Pranav Adhyapak
  • Shobhna KapoorEmail author
Article
Part of the following topical collections:
  1. Membrane and Receptor Dynamics

Abstract

Biological membranes display a staggering complexity of lipids and proteins orchestrating cellular functions. Superior analytical tools coupled with numerous functional cellular screens have enabled us to query their role in cellular signalling, trafficking, guiding protein structure and function–all of which rely on the dynamic membrane lipid properties indispensable for proper cellular functions. Alteration of these has led to emergence of various pathological conditions, thus opening an area of lipid-centric therapeutic approaches. This perspective is a short summary of the dynamic properties of membranes essential for proper cellular functions, dictating both protein and lipid functions, and mis-regulated in diseases. Towards the end, we focus on some challenges lying ahead and potential means to tackle the same, mainly underscored by multi-disciplinary approaches.

Graphic Abstract

Keywords

Membrane lipid structure Lipid domains Lipid-protein interactions Lipid diffusion Membrane-targeting drugs 

Abbreviations

lo

Liquid ordered domains

lLd

Liquid disordered domains/phase

PALM

Photoactivated localization microscopy

STED

Stimulated emission depletion

NSOM

Near-field scanning optical microscopy

FRET

Förster resonance energy transfer

iSCAT

Interferometric scattering microscopy

SANS

Small-angle neutron scattering

SPT

Single particle tracking

FCS

Fluorescence correlation spectroscopy

svFCS

Spot variation fluorescence correlation spectroscopy

GUVs

Giant unilamellar vesicles

AFM

Atomic force microscopy

PH

Pleckstrin homology

COPI

Coat protein I

SM

Sphingomyelin

GPCR

G protein-coupled receptor

GTP

Guanosine triphosphate

PIP2

Phosphatidyl inositol 4, 5 bisphosphate

IgE

Immunoglobulin E

FCϵRI

High affinity IgE receptor

PS

Phosphatidyl serine

PE

Phosphatidyl ethanolamine

CD44

Cluster of differentiation 44

CD24

Cluster of differentiation 24

EGFR

Epidermal growth factor receptor

PI

Phosphatidyl inositols

Arp 2/3

Actin related proteins 2/3

WASP

Wiskott–Aldrich syndrome protein

TDM

Trehalose Dimycolate

MLT

Membrane lipid therapy

PI3K

Phosphoinositide 3 kinase

CDC42

Cell division control protein 42

RAC1

Ras-related C3 botulinum toxin substrate 1

Caspase

Cysteine-aspartic proteases

FADD

Fas-associated death domain-containing protein

DISC

Death-inducing signalling complex

PPARα

Peroxisome proliferator-activated receptor alpha

DAG

Diacyl glycerol

Notes

Acknowledgements

We thank Dr. Rishikesh Narayan for comments on this manuscript. The work in our lab is supported by DBT-Ramalingaswami fellowship and DST Inspire Faculty Award awarded to SK. PA acknowledges DBT for PhD fellowship.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Abankwa D, Gorfe AA, Hancock JF (2007) Ras nanoclusters: molecular structure and assembly. Semin Cell Dev Biol 18:599–607.  https://doi.org/10.1016/j.semcdb.2007.08.003 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agrawal AG, Somani RR (2009) Farnesyltransferase inhibitor as anticancer agent. Mini Rev Med Chem 9:638–652CrossRefGoogle Scholar
  3. Ando J et al (2015) Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman microscopy. Proc Natl Acad Sci USA 112:4558–4563.  https://doi.org/10.1073/pnas.1418088112 CrossRefPubMedGoogle Scholar
  4. Antonny B (2011) Mechanisms of membrane curvature sensing. Annu Rev Biochem 80:101–123.  https://doi.org/10.1146/annurev-biochem-052809-155121 CrossRefPubMedGoogle Scholar
  5. Atilla-Gokcumen GE et al (2014) Dividing cells regulate their lipid composition and localization. Cell 156:428–439.  https://doi.org/10.1016/j.cell.2013.12.015 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Babu M et al (2012) Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489:585–589.  https://doi.org/10.1038/nature11354 CrossRefGoogle Scholar
  7. Bacia K, Scherfeld D, Kahya N, Schwille P (2004) Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys J 87:1034–1043.  https://doi.org/10.1529/biophysj.104.040519 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Barcelo-Coblijn G et al (2011) Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc Natl Acad Sci USA 108:19569–19574.  https://doi.org/10.1073/pnas.1115484108 CrossRefPubMedGoogle Scholar
  9. Barrera NP, Zhou M, Robinson CV (2013) The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol 23:1–8.  https://doi.org/10.1016/j.tcb.2012.08.007 CrossRefPubMedGoogle Scholar
  10. Berger EA (1997) HIV entry and tropism: the chemokine receptor connection. AIDS 11(Suppl A):S3–S16PubMedGoogle Scholar
  11. Bigay J, Antonny B (2012) Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev Cell 23:886–895.  https://doi.org/10.1016/j.devcel.2012.10.009 CrossRefPubMedGoogle Scholar
  12. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544CrossRefGoogle Scholar
  13. Chandra A et al (2011) The GDI-like solubilizing factor PDEdelta sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol 14:148–158.  https://doi.org/10.1038/ncb2394 CrossRefPubMedGoogle Scholar
  14. Chattopadhyay A, Jafurulla M (2012) Role of membrane cholesterol in leishmanial infection. Adv Exp Med Biol 749:201–213.  https://doi.org/10.1007/978-1-4614-3381-1_14 CrossRefPubMedGoogle Scholar
  15. Contreras FX et al (2012) Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature 481:525–529.  https://doi.org/10.1038/nature10742 CrossRefPubMedGoogle Scholar
  16. Coskun U, Simons K (2011) Cell membranes: the lipid perspective. Structure 19:1543–1548.  https://doi.org/10.1016/j.str.2011.10.010 CrossRefPubMedGoogle Scholar
  17. Cywes C, Wessels MR (2001) Group A Streptococcus tissue invasion by CD44-mediated cell signalling. Nature 414:648–652.  https://doi.org/10.1038/414648a CrossRefPubMedGoogle Scholar
  18. Dadhich R, Singh A, Menon AP, Mishra M, Athul CD, Kapoor S (2019) Biophysical characterization of mycobacterial model membranes and their interaction with rifabutin: towards lipid-guided drug screening in tuberculosis. Biochim Biophys Acta Biomembr 1861:1213–1227.  https://doi.org/10.1016/j.bbamem.2019.04.004 CrossRefPubMedGoogle Scholar
  19. de Wit G, Danial JS, Kukura P, Wallace MI (2015) Dynamic label-free imaging of lipid nanodomains. Proc Natl Acad Sci USA 112:12299–12303.  https://doi.org/10.1073/pnas.1508483112 CrossRefPubMedGoogle Scholar
  20. Dehio C, Meyer M, Berger J, Schwarz H, Lanz C (1997) Interaction of Bartonella henselae with endothelial cells results in bacterial aggregation on the cell surface and the subsequent engulfment and internalisation of the bacterial aggregate by a unique structure, the invasome. J Cell Sci 110(Pt 18):2141–2154PubMedGoogle Scholar
  21. Dinic J, Ashrafzadeh P, Parmryd I (2013) Actin filaments attachment at the plasma membrane in live cells cause the formation of ordered lipid domains. Biochim Biophys Acta 1828:1102–1111.  https://doi.org/10.1016/j.bbamem.2012.12.004 CrossRefPubMedGoogle Scholar
  22. Doria ML, Cotrim CZ, Simoes C, Macedo B, Domingues P, Domingues MR, Helguero LA (2013) Lipidomic analysis of phospholipids from human mammary epithelial and breast cancer cell lines. J Cell Physiol 228:457–468.  https://doi.org/10.1002/jcp.24152 CrossRefPubMedGoogle Scholar
  23. Earl PL, Koenig S, Moss B (1991) Biological and immunological properties of human immunodeficiency virus type 1 envelope glycoprotein: analysis of proteins with truncations and deletions expressed by recombinant vaccinia viruses. J Virol 65:31–41PubMedPubMedCentralGoogle Scholar
  24. Eggeling C et al (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162.  https://doi.org/10.1038/nature07596 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Emoto K, Toyama-Sorimachi N, Karasuyama H, Inoue K, Umeda M (1997) Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp Cell Res 232:430–434.  https://doi.org/10.1006/excr.1997.3521 CrossRefPubMedGoogle Scholar
  26. Erazo T et al (2016) The new antitumor drug ABTL0812 inhibits the Akt/mTORC1 axis by upregulating tribbles-3 pseudokinase. Clin Cancer Res 22:2508–2519.  https://doi.org/10.1158/1078-0432.CCR-15-1808 CrossRefPubMedGoogle Scholar
  27. Escriba PV (2017) Membrane-lipid therapy: a historical perspective of membrane-targeted therapies - From lipid bilayer structure to the pathophysiological regulation of cells. Biochim Biophys Acta Biomembr 1859:1493–1506.  https://doi.org/10.1016/j.bbamem.2017.05.017 CrossRefPubMedGoogle Scholar
  28. Filipp D, Leung BL, Zhang J, Veillette A, Julius M (2004) Enrichment of lck in lipid rafts regulates colocalized fyn activation and the initiation of proximal signals through TCR alpha beta. J Immunol 172:4266–4274.  https://doi.org/10.4049/jimmunol.172.7.4266 CrossRefPubMedGoogle Scholar
  29. Finnegan CM, Rawat SS, Puri A, Wang JM, Ruscetti FW, Blumenthal R (2004) Ceramide, a target for antiretroviral therapy. Proc Natl Acad Sci USA 101:15452–15457.  https://doi.org/10.1073/pnas.0402874101 CrossRefPubMedGoogle Scholar
  30. Finnegan CM, Rawat SS, Cho EH, Guiffre DL, Lockett S, Merrill AH Jr, Blumenthal R (2007) Sphingomyelinase restricts the lateral diffusion of CD4 and inhibits human immunodeficiency virus fusion. J Virol 81:5294–5304.  https://doi.org/10.1128/JVI.02553-06 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Flieger A, Frischknecht F, Hacker G, Hornef MW, Pradel G (2018) Pathways of host cell exit by intracellular pathogens. Microb Cell 5:525–544.  https://doi.org/10.15698/mic2018.12.659 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Friedrichson T, Kurzchalia TV (1998) Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394:802–805.  https://doi.org/10.1038/29570 CrossRefGoogle Scholar
  33. Gajate C, Mollinedo F (2007) Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood 109:711–719.  https://doi.org/10.1182/blood-2006-04-016824 CrossRefPubMedGoogle Scholar
  34. Garcia-Saez AJ, Chiantia S, Schwille P (2007) Effect of line tension on the lateral organization of lipid membranes. J Biol Chem 282:33537–33544.  https://doi.org/10.1074/jbc.M706162200 CrossRefPubMedGoogle Scholar
  35. Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA 100:15554–15559.  https://doi.org/10.1073/pnas.2534386100 CrossRefPubMedGoogle Scholar
  36. Ghosh S, Saha S, Goswami D, Bilgrami S, Mayor S (2012) Dynamic imaging of homo-FRET in live cells by fluorescence anisotropy microscopy. Methods Enzymol 505:291–327.  https://doi.org/10.1016/B978-0-12-388448-0.00024-3 CrossRefPubMedGoogle Scholar
  37. Grassme H, Jendrossek V, Bock J, Riehle A, Gulbins E (2002) Ceramide-rich membrane rafts mediate CD40 clustering. J Immunol 168:298–307.  https://doi.org/10.4049/jimmunol.168.1.298 CrossRefPubMedGoogle Scholar
  38. Guardiola-Serrano F et al (2015) The novel anticancer drug hydroxytriolein inhibits lung cancer cell proliferation via a protein kinase calpha- and extracellular signal-regulated kinase 1/2-dependent mechanism. J Pharmacol Exp Ther 354:213–224.  https://doi.org/10.1124/jpet.114.222281 CrossRefPubMedGoogle Scholar
  39. Hammond GR, Balla T (2015) Polyphosphoinositide binding domains: key to inositol lipid biology. Biochim Biophys Acta 1851:746–758.  https://doi.org/10.1016/j.bbalip.2015.02.013 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Heinemann F, Vogel SK, Schwille P (2013) Lateral membrane diffusion modulated by a minimal actin cortex. Biophys J 104:1465–1475.  https://doi.org/10.1016/j.bpj.2013.02.042 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Honigmann A, Mueller V, Ta H, Schoenle A, Sezgin E, Hell SW, Eggeling C (2014) Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat Commun 5:5412.  https://doi.org/10.1038/ncomms6412 CrossRefPubMedGoogle Scholar
  42. Huang Q, Shen HM, Ong CN (2005) Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway. Cell Mol Life Sci 62:1167–1175.  https://doi.org/10.1007/s00018-005-5050-2 CrossRefPubMedGoogle Scholar
  43. Kahya N, Scherfeld D, Bacia K, Poolman B, Schwille P (2003) Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J Biol Chem 278:28109–28115.  https://doi.org/10.1074/jbc.M302969200 CrossRefPubMedGoogle Scholar
  44. Kapoor S et al (2011) Temperature-pressure phase diagram of a heterogeneous anionic model biomembrane system: results from a combined calorimetry, spectroscopy and microscopy study. Biochim Biophys Acta 1808:1187–1195.  https://doi.org/10.1016/j.bbamem.2011.01.011 CrossRefPubMedGoogle Scholar
  45. Kapoor S, Triola G, Vetter IR, Erlkamp M, Waldmann H, Winter R (2012a) Revealing conformational substates of lipidated N-Ras protein by pressure modulation. Proc Natl Acad Sci USA 109:460–465.  https://doi.org/10.1073/pnas.1110553109 CrossRefPubMedGoogle Scholar
  46. Kapoor S, Weise K, Erlkamp M, Triola G, Waldmann H, Winter R (2012b) The role of G-domain orientation and nucleotide state on the Ras isoform-specific membrane interaction. Eur Biophys J 41:801–813.  https://doi.org/10.1007/s00249-012-0841-5 CrossRefPubMedGoogle Scholar
  47. Khanzada UK, Pardo OE, Meier C, Downward J, Seckl MJ, Arcaro A (2006) Potent inhibition of small-cell lung cancer cell growth by simvastatin reveals selective functions of Ras isoforms in growth factor signalling. Oncogene 25:877–887.  https://doi.org/10.1038/sj.onc.1209117 CrossRefPubMedGoogle Scholar
  48. Koldso H, Reddy T, Fowler PW, Duncan AL, Sansom MS (2016) Membrane compartmentalization reducing the mobility of lipids and proteins within a model plasma membrane. J Phys Chem B 120:8873–8881.  https://doi.org/10.1021/acs.jpcb.6b05846 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Krivanek R, Okoro L, Winter R (2008) Effect of cholesterol and ergosterol on the compressibility and volume fluctuations of phospholipid-sterol bilayers in the critical point region: a molecular acoustic and calorimetric study. Biophys J 94:3538–3548.  https://doi.org/10.1529/biophysj.107.122549 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kumar GA, Jafurulla M, Chattopadhyay A (2016) The membrane as the gatekeeper of infection: cholesterol in host-pathogen interaction. Chem Phys Lipids 199:179–185.  https://doi.org/10.1016/j.chemphyslip.2016.02.007 CrossRefPubMedGoogle Scholar
  51. Kusumi A et al (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378.  https://doi.org/10.1146/annurev.biophys.34.040204.144637 CrossRefPubMedGoogle Scholar
  52. Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111.  https://doi.org/10.1038/nrm2328 CrossRefPubMedGoogle Scholar
  53. Lingwood D et al (2011) Cholesterol modulates glycolipid conformation and receptor activity. Nat Chem Biol 7:260–262.  https://doi.org/10.1038/nchembio.551 CrossRefPubMedGoogle Scholar
  54. Lozano MM, Liu Z, Sunnick E, Janshoff A, Kumar K, Boxer SG (2013) Colocalization of the ganglioside G(M1) and cholesterol detected by secondary ion mass spectrometry. J Am Chem Soc 135:5620–5630.  https://doi.org/10.1021/ja310831m CrossRefPubMedPubMedCentralGoogle Scholar
  55. Manes S, del Real G, Martinez AC (2003) Pathogens: raft hijackers. Nat Rev Immunol 3:557–568.  https://doi.org/10.1038/nri1129 CrossRefPubMedGoogle Scholar
  56. Marki F, Hanni E, Fredenhagen A, van Oostrum J (1991) Mode of action of the lanthionine-containing peptide antibiotics duramycin, duramycin B and C, and cinnamycin as indirect inhibitors of phospholipase A2. Biochem Pharmacol 42:2027–2035CrossRefGoogle Scholar
  57. Martin-Gago P et al (2017) A PDE6delta-KRas inhibitor chemotype with up to seven h-bonds and picomolar affinity that prevents efficient inhibitor release by Arl2. Angew Chem Int Ed Engl 56:2423–2428.  https://doi.org/10.1002/anie.201610957 CrossRefPubMedGoogle Scholar
  58. McLaughlin PJ, Gooch JT, Mannherz HG, Weeds AG (1993) Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature 364:685–692.  https://doi.org/10.1038/364685a0 CrossRefPubMedGoogle Scholar
  59. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777.  https://doi.org/10.1038/nrc2222 CrossRefPubMedGoogle Scholar
  60. Mikaty G et al (2009) Extracellular bacterial pathogen induces host cell surface reorganization to resist shear stress. PLoS Pathog 5:e1000314.  https://doi.org/10.1371/journal.ppat.1000314 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mollinedo F, Gajate C (2015) Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul 57:130–146.  https://doi.org/10.1016/j.jbior.2014.10.003 CrossRefPubMedGoogle Scholar
  62. Moon S, Yan R, Kenny SJ, Shyu Y, Xiang L, Li W, Xu K (2017) Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes. J Am Chem Soc 139:10944–10947.  https://doi.org/10.1021/jacs.7b03846 CrossRefPubMedGoogle Scholar
  63. Mylvaganam SM, Grinstein S, Freeman SA (2018) Picket-fences in the plasma membrane: functions in immune cells and phagocytosis. Semin Immunopathol 40:605–615.  https://doi.org/10.1007/s00281-018-0705-x CrossRefPubMedGoogle Scholar
  64. Nitenberg M et al (2018) The potent effect of mycolactone on lipid membranes. PLoS Pathog 14:e1006814.  https://doi.org/10.1371/journal.ppat.1006814 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ortega-Arroyo J, Kukura P (2012) Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys Chem Chem Phys 14:15625–15636.  https://doi.org/10.1039/c2cp41013c CrossRefPubMedGoogle Scholar
  66. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996.  https://doi.org/10.1038/nrd2199 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Owen DM, Williamson D, Magenau A, Gaus K (2012a) Optical techniques for imaging membrane domains in live cells (live-cell palm of protein clustering). Methods Enzymol 504:221–235.  https://doi.org/10.1016/B978-0-12-391857-4.00011-2 CrossRefPubMedGoogle Scholar
  68. Owen DM, Williamson DJ, Magenau A, Gaus K (2012b) Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat Commun 3:1256.  https://doi.org/10.1038/ncomms2273 CrossRefPubMedGoogle Scholar
  69. Parasassi T, Gratton E, Yu WM, Wilson P, Levi M (1997) Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J 72:2413–2429.  https://doi.org/10.1016/S0006-3495(97)78887-8 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Pathak P, London E (2015) The effect of membrane lipid composition on the formation of lipid ultrananodomains. Biophys J 109:1630–1638.  https://doi.org/10.1016/j.bpj.2015.08.029 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Pencer J, Mills TT, Kucerka N, Nieh MP, Katsaras J (2007) Small-angle neutron scattering to detect rafts and lipid domains. Methods Mol Biol 398:231–244.  https://doi.org/10.1007/978-1-59745-513-8_16 CrossRefPubMedGoogle Scholar
  72. Percherancier Y et al (2003) HIV-1 entry into T-cells is not dependent on CD4 and CCR71 localization to sphingolipid-enriched, detergent-resistant, raft membrane domains. J Biol Chem 278:3153–3161.  https://doi.org/10.1074/jbc.M207371200 CrossRefPubMedGoogle Scholar
  73. Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47:1597–1598.  https://doi.org/10.1194/jlr.E600002-JLR200 CrossRefPubMedGoogle Scholar
  74. Pincet F, Adrien V, Yang R, Delacotte J, Rothman JE, Urbach W, Tareste D (2016) FRAP to characterize molecular diffusion and interaction in various membrane environments. PLoS ONE 11:e0158457.  https://doi.org/10.1371/journal.pone.0158457 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Plowman SJ, Muncke C, Parton RG, Hancock JF (2005) H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc Natl Acad Sci USA 102:15500–15505.  https://doi.org/10.1073/pnas.0504114102 CrossRefPubMedGoogle Scholar
  76. Pralle A, Keller P, Florin EL, Simons K, Horber JK (2000) Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148:997–1008.  https://doi.org/10.1083/jcb.148.5.997 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Rawat SS et al (2004) Elevated expression of GM3 in receptor-bearing targets confers resistance to human immunodeficiency virus type 1 fusion. J Virol 78:7360–7368.  https://doi.org/10.1128/JVI.78.14.7360-7368.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Rawat SS, Viard M, Gallo SA, Blumenthal R, Puri A (2006) Sphingolipids, cholesterol, and HIV-1: a paradigm in viral fusion. Glycoconj J 23:189–197.  https://doi.org/10.1007/s10719-006-7924-4 CrossRefPubMedGoogle Scholar
  79. Rawat SS, Zimmerman C, Johnson BT, Cho E, Lockett SJ, Blumenthal R, Puri A (2008) Restricted lateral mobility of plasma membrane CD4 impairs HIV-1 envelope glycoprotein mediated fusion. Mol Membr Biol 25:83–94.  https://doi.org/10.1080/09687680701613713 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Riethmuller J, Riehle A, Grassme H, Gulbins E (2006) Membrane rafts in host-pathogen interactions. Biochim Biophys Acta 1758:2139–2147.  https://doi.org/10.1016/j.bbamem.2006.07.017 CrossRefPubMedGoogle Scholar
  81. Rocks O et al (2005) An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307:1746–1752.  https://doi.org/10.1126/science.1105654 CrossRefGoogle Scholar
  82. Rodriguez-Rivera FP, Zhou X, Theriot JA, Bertozzi CR (2017) Visualization of mycobacterial membrane dynamics in live cells. J Am Chem Soc 139:3488–3495.  https://doi.org/10.1021/jacs.6b12541 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Rotblat B, Prior IA, Muncke C, Parton RG, Kloog Y, Henis YI, Hancock JF (2004) Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane. Mol Cell Biol 24:6799–6810.  https://doi.org/10.1128/MCB.24.15.6799-6810.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Saha S, Raghupathy R, Mayor S (2015) Homo-FRET imaging highlights the nanoscale organization of cell surface molecules. Methods Mol Biol 1251:151–173.  https://doi.org/10.1007/978-1-4939-2080-8_9 CrossRefPubMedGoogle Scholar
  85. Saka SK, Honigmann A, Eggeling C, Hell SW, Lang T, Rizzoli SO (2014) Multi-protein assemblies underlie the mesoscale organization of the plasma membrane. Nat Commun 5:4509.  https://doi.org/10.1038/ncomms5509 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Saliba AE, Vonkova I, Gavin AC (2015) The systematic analysis of protein-lipid interactions comes of age. Nat Rev Mol Cell Biol 16:753–761.  https://doi.org/10.1038/nrm4080 CrossRefPubMedGoogle Scholar
  87. Sarkar-Banerjee S, Sayyed-Ahmad A, Prakash P, Cho KJ, Waxham MN, Hancock JF, Gorfe AA (2017) Spatiotemporal analysis of K-ras plasma membrane interactions reveals multiple high order homo-oligomeric complexes. J Am Chem Soc 139:13466–13475.  https://doi.org/10.1021/jacs.7b06292 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Scheidig AJ, Franken SM, Corrie JE, Reid GP, Wittinghofer A, Pai EF, Goody RS (1995) X-ray crystal structure analysis of the catalytic domain of the oncogene product p21H-ras complexed with caged GTP and mant dGppNHp. J Mol Biol 253:132–150.  https://doi.org/10.1006/jmbi.1995.0541 CrossRefPubMedGoogle Scholar
  89. Sengupta D, Chattopadhyay A (2015) Molecular dynamics simulations of GPCR-cholesterol interaction: an emerging paradigm. Biochim Biophys Acta 1848:1775–1782.  https://doi.org/10.1016/j.bbamem.2015.03.018 CrossRefPubMedGoogle Scholar
  90. Sengupta P, Jovanovic-Talisman T, Skoko D, Renz M, Veatch SL, Lippincott-Schwartz J (2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Methods 8:969–975.  https://doi.org/10.1038/nmeth.1704 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Sezgin E, Schwille P (2011) Fluorescence techniques to study lipid dynamics. Cold Spring Harb Perspect Biol 3:a009803.  https://doi.org/10.1101/cshperspect.a009803 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Shen S, Yang L, Li L, Bai Y, Cai C, Liu H (2017) A plasma lipidomics strategy reveals perturbed lipid metabolic pathways and potential lipid biomarkers of human colorectal cancer. J Chromatogr B 1068–1069:41–48.  https://doi.org/10.1016/j.jchromb.2017.10.004 CrossRefGoogle Scholar
  93. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572.  https://doi.org/10.1038/42408 CrossRefGoogle Scholar
  94. Simons K, Vaz WL (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269–295.  https://doi.org/10.1146/annurev.biophys.32.110601.141803 CrossRefPubMedGoogle Scholar
  95. Sinensky M, Beck LA, Leonard S, Evans R (1990) Differential inhibitory effects of lovastatin on protein isoprenylation and sterol synthesis. J Biol Chem 265:19937–19941PubMedGoogle Scholar
  96. Soubias O, Gawrisch K (2012) The role of the lipid matrix for structure and function of the GPCR rhodopsin. Biochim Biophys Acta 1818:234–240.  https://doi.org/10.1016/j.bbamem.2011.08.034 CrossRefPubMedGoogle Scholar
  97. Soubias O, Teague WE Jr, Hines KG, Gawrisch K (2015) Rhodopsin/lipid hydrophobic matching-rhodopsin oligomerization and function. Biophys J 108:1125–1132.  https://doi.org/10.1016/j.bpj.2015.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Spillane KM, Ortega-Arroyo J, de Wit G, Eggeling C, Ewers H, Wallace MI, Kukura P (2014) High-speed single-particle tracking of GM1 in model membranes reveals anomalous diffusion due to interleaflet coupling and molecular pinning. Nano Lett 14:5390–5397.  https://doi.org/10.1021/nl502536u CrossRefPubMedPubMedCentralGoogle Scholar
  99. Srivatsav AT, Mishra M, Kapoor S (2018) Small-molecule modulation of lipid-dependent cellular processes against cancer: fats on the gunpoint. Biomed Res Int 2018:6437371.  https://doi.org/10.1155/2018/6437371 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Steffens CM, Hope TJ (2004) Mobility of the human immunodeficiency virus (HIV) receptor CD4 and coreceptor CCR100 in living cells: implications for HIV fusion and entry events. J Virol 78:9573–9578.  https://doi.org/10.1128/JVI.78.17.9573-9578.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Suzuki KG (2016) Single-molecule imaging of signal transduction via GPI-anchored receptors. Methods Mol Biol 1376:229–238.  https://doi.org/10.1007/978-1-4939-3170-5_19 CrossRefPubMedGoogle Scholar
  102. Teres S et al (2012) 2-Hydroxyoleate, a nontoxic membrane binding anticancer drug, induces glioma cell differentiation and autophagy. Proc Natl Acad Sci USA 109:8489–8494.  https://doi.org/10.1073/pnas.1118349109 CrossRefPubMedGoogle Scholar
  103. Urbancic I, Brun J, Shrestha D, Waithe D, Eggeling C, Chojnacki J (2018) Lipid composition but not curvature is the determinant factor for the low molecular mobility observed on the membrane of virus-like vesicles. Viruses 10(8):415.  https://doi.org/10.3390/v10080415 CrossRefPubMedCentralGoogle Scholar
  104. van Zanten TS, Cambi A, Koopman M, Joosten B, Figdor CG, Garcia-Parajo MF (2009) Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. Proc Natl Acad Sci USA 106:18557–18562.  https://doi.org/10.1073/pnas.0905217106 CrossRefPubMedGoogle Scholar
  105. Varshney P, Yadav V, Saini N (2016) Lipid rafts in immune signalling: current progress and future perspective. Immunology 149:13–24.  https://doi.org/10.1111/imm.12617 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85:3074–3083.  https://doi.org/10.1016/S0006-3495(03)74726-2 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Visco I, Chiantia S, Schwille P (2014) Asymmetric supported lipid bilayer formation via methyl-beta-cyclodextrin mediated lipid exchange: influence of asymmetry on lipid dynamics and phase behavior. Langmuir 30:7475–7484.  https://doi.org/10.1021/la500468r CrossRefPubMedGoogle Scholar
  108. Wang R et al (2013) Lipid raft regulates the initial spreading of melanoma A375 cells by modulating beta1 integrin clustering. Int J Biochem Cell Biol 45:1679–1689.  https://doi.org/10.1016/j.biocel.2013.04.031 CrossRefPubMedGoogle Scholar
  109. Wang YH, Bucki R, Janmey PA (2016) Cholesterol-dependent phase-demixing in lipid bilayers as a switch for the activity of the phosphoinositide-binding cytoskeletal protein gelsolin. Biochemistry 55:3361–3369.  https://doi.org/10.1021/acs.biochem.5b01363 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wawrezinieck L, Rigneault H, Marguet D, Lenne PF (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89:4029–4042.  https://doi.org/10.1529/biophysj.105.067959 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Weise K, Triola G, Brunsveld L, Waldmann H, Winter R (2009) Influence of the lipidation motif on the partitioning and association of N-Ras in model membrane subdomains. J Am Chem Soc 131:1557–1564.  https://doi.org/10.1021/ja808691r CrossRefPubMedGoogle Scholar
  112. Weise K et al (2011) Membrane-mediated induction and sorting of K-Ras microdomain signaling platforms. J Am Chem Soc 133:880–887.  https://doi.org/10.1021/ja107532q CrossRefPubMedGoogle Scholar
  113. Weise K et al (2012) Dissociation of the K-Ras4B/PDEdelta complex upon contact with lipid membranes: membrane delivery instead of extraction. J Am Chem Soc 134:11503–11510.  https://doi.org/10.1021/ja305518h CrossRefPubMedGoogle Scholar
  114. Wu H et al (2009) Effect of simvastatin on glioma cell proliferation, migration, and apoptosis. Neurosurgery 65:1087–1096.  https://doi.org/10.1227/01.NEU.0000360130.52812.1D (discussion 1096–1087) CrossRefPubMedPubMedCentralGoogle Scholar
  115. Yahi N, Aulas A, Fantini J (2010) How cholesterol constrains glycolipid conformation for optimal recognition of Alzheimer’s beta amyloid peptide (Abeta1-40). PLoS ONE 5:e9079.  https://doi.org/10.1371/journal.pone.0009079 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Yang L et al (2015) Comprehensive lipid profiling of plasma in patients with benign breast tumor and breast cancer reveals novel biomarkers. Anal Bioanal Chem 407:5065–5077.  https://doi.org/10.1007/s00216-015-8484-x CrossRefPubMedGoogle Scholar
  117. Yu J, Fischman DA, Steck TL (1973) Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct 1:233–248.  https://doi.org/10.1002/jss.400010308 CrossRefPubMedGoogle Scholar
  118. Zalba S, Ten Hagen TL (2017) Cell membrane modulation as adjuvant in cancer therapy. Cancer Treat Rev 52:48–57.  https://doi.org/10.1016/j.ctrv.2016.10.008 CrossRefPubMedGoogle Scholar
  119. Zhang M et al (2005) CD45 signals outside of lipid rafts to promote ERK activation, synaptic raft clustering, and IL-2 production. J Immunol 174:1479–1490.  https://doi.org/10.4049/jimmunol.174.3.1479 CrossRefPubMedGoogle Scholar
  120. Zhou Y, Hancock JF (2018a) Deciphering lipid codes: K-Ras as a paradigm. Traffic 19:157–165.  https://doi.org/10.1111/tra.12541 CrossRefPubMedGoogle Scholar
  121. Zhou Y, Hancock JF (2018b) A novel prenyl-polybasic domain code determines lipid-binding specificity of the K-Ras membrane anchor. Small GTPases.  https://doi.org/10.1080/21541248.2017.1379583 CrossRefPubMedGoogle Scholar
  122. Zhou X et al (2012) Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics. PLoS ONE 7:e48889.  https://doi.org/10.1371/journal.pone.0048889 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology BombayPowaiIndia

Personalised recommendations