Advertisement

The Journal of Membrane Biology

, Volume 252, Issue 4–5, pp 465–481 | Cite as

Function and Regulation of Acid Resistance Antiporters

  • Eva-Maria KrammerEmail author
  • Martine PrévostEmail author
Article
Part of the following topical collections:
  1. Membrane and Receptor Dynamics

Abstract

Bacterial pathogens are a major cause of foodborne diseases and food poisoning. To cope with the acid conditions encountered in different environments such as in fermented food or in the gastric compartment, neutralophilic bacteria have developed several adaptive mechanisms. One of those mechanisms, the amino acid dependent system, consumes intracellular protons in biochemical reactions. It involves an antiporter that facilitates the exchange of external substrate amino acid for internal product and a cytoplasmic decarboxylase that catalyzes a proton-consuming decarboxylation of the substrate. So far, four acid resistance antiporters have been discovered, namely the glutamate-γ-aminobutyric acid antiporter GadC, the arginine-agmatine antiporter AdiC, the lysine-cadaverine antiporter CadB, and the ornithine-putrescine antiporter PotE. The 3D structures of AdiC and GadC, reveal an inverted-repeat fold of two times 5 transmembrane helices, typical of the amino acid-polyamine-organocation (APC) superfamily of transporters. This review summarizes our current knowledge on the transport mechanism, the pH regulation and the selectivity of these four acid resistance antiporters. It also highlights that AdiC is a paradigm for eukaryotic amino acid transporters of the APC superfamily as structural models of several of these transporters built using AdiC structures were exploited to unveil their mechanisms of amino acid recognition and translocation.

Keywords

Acid resistance APC transporter Molecular simulation Foodborne disease Transport mechanism pH regulation 

Notes

Acknowledgements

M.P. is a senior research associate and E.M.K. is a postdoctoral researcher of the Fonds de la Recherche Scientifique de Belgique (F.R.S.-F.R.N.S.), Belgium. This work was supported by an ARC Grant (AUWB 2010-15-2) from the Fédération Wallonie-Bruxelles and by the Fonds National de La Recherche Scientifique (PDR T.1107.15).

References

  1. Amano K, Ishii R, Mochizuki T, Takatsu S, Abe F (2019) Hyperactive mutation occurs adjacent to the essential glutamate 286 for transport in the yeast tryptophan permease Tat2. Biochem Biophys Res Commun 509:1047–1052.  https://doi.org/10.1016/j.bbrc.2019.01.038 CrossRefPubMedGoogle Scholar
  2. André B (2018) Tribute to Marcelle Grenson (1925–1996), a pioneer in the study of amino acid transport in yeast. Int J Mol Sci 19:1207.  https://doi.org/10.3390/ijms19041207 CrossRefPubMedCentralGoogle Scholar
  3. Aquino P, Honda B, Jaini S, Lyubetskaya A, Hosur K, Chiu JG, Ekladious I, Hu D, Jin L, Sayeg MK, Stettner AI, Wang J, Wong BG, Wong WS, Alexander SL, Ba C, Bensussen SI, Bernstein DB, Braff D, Cha S, Cheng DI, Cho JH, Chou K, Chuang J, Gastler DE, Grasso DJ, Greifenberger JS, Guo C, Hawes AK, Israni DV, Jain SR, Kim J, Lei J, Li H, Li D, Li Q, Mancuso CP, Mao N, Masud SF, Meisel CL, Mi J, Nykyforchyn CS, Park M, Peterson HM, Ramirez AK, Reynolds DS, Rim NG, Saffie JC, Su H, Su WR, Su Y, Sun M, Thommes MM, Tu T, Varongchayakul N, Wagner TE, Weinberg BH, Yang R, Yaroslavsky A, Yoon C, Zhao Y, Zollinger AJ, Stringer AM, Foster JW, Wade J, Raman S, Broude N, Wong WW, Galagan JE (2017) Coordinated regulation of acid resistance in Escherichia coli. BMC Syst Biol 11:1–15.  https://doi.org/10.1186/s12918-016-0376-y CrossRefPubMedPubMedCentralGoogle Scholar
  4. Augustyn E, Finke K, Zur AA, Hansen L, Heeren N, Chien H-C, Lin L, Giacomini KM, Colas C, Schlessinger A, Thomas AA (2016) LAT-1 activity of meta-substituted phenylalanine and tyrosine analogs. Bioorg Med Chem Lett 26:2616–2621.  https://doi.org/10.1016/j.bmcl.2016.04.023 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borsani G, Bassi MT, Sperandeo MP, De Grandi A, Buoninconti A, Riboni M, Manzoni M, Incerti B, Pepe A, Andria G, Ballabio A, Sebastio G (1999) SLC7A7, encoding a putative permease-related protein, is mutated in patients with lysinuric protein intolerance. Nat Genet 21:297–301.  https://doi.org/10.1038/6815 CrossRefPubMedGoogle Scholar
  6. Chang S, Hu J, Lin P, Jiao X, Tian X (2010) Substrate recognition and transport behavior analyses of amino acid antiporter with coarse-grained models. Mol BioSyst 6:2430.  https://doi.org/10.1039/c005266c CrossRefPubMedGoogle Scholar
  7. Coleman JA, Green EM, Gouaux E (2016) X-ray structures and mechanism of the human serotonin transporter. Nature 532:334–339.  https://doi.org/10.1038/nature17629 CrossRefPubMedPubMedCentralGoogle Scholar
  8. De Biase D, Pennacchietti E (2012) Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Mol Microbiol 86:770–786.  https://doi.org/10.1111/mmi.12020 CrossRefPubMedGoogle Scholar
  9. De Biase D, Tramonti A, Bossa F, Visca P (1999) The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 32:1198–1211.  https://doi.org/10.1046/j.1365-2958.1999.01430.x CrossRefPubMedGoogle Scholar
  10. Deshpande AA, Sharma M, Bachhawat AK (2017) Insights into the molecular basis for substrate binding and specificity of the fungal cystine transporter CgCYN1. Biochim Biophys Acta Biomembr 1859:2259–2268.  https://doi.org/10.1016/j.bbamem.2017.08.020 CrossRefPubMedGoogle Scholar
  11. Diallinas G (2016) Dissection of transporter function: from genetics to structure. Trends Genet 32:576–590.  https://doi.org/10.1016/j.tig.2016.06.003 CrossRefPubMedGoogle Scholar
  12. Diez-Gonzalez F, Karaibrahimoglu Y (2004) Comparison of the glutamate-, arginine- and lysine-dependent acid resistance systems in Escherichia coli O157:H7. J Appl Microbiol 96:1237–1244.  https://doi.org/10.1111/j.1365-2672.2004.02251.x CrossRefPubMedGoogle Scholar
  13. Errasti-Murugarren E, Fort J, Bartoccioni P, Díaz L, Pardon E, Carpena X, Espino-Guarch M, Zorzano A, Ziegler C, Steyaert J, Fernández-Recio J, Fita I, Palacín M (2019) L amino acid transporter structure and molecular bases for the asymmetry of substrate interaction. Nat Commun 10:1807.  https://doi.org/10.1038/s41467-019-09837-z CrossRefPubMedPubMedCentralGoogle Scholar
  14. Espino Guarch M, Font-Llitjós M, Murillo-Cuesta S, Errasti- Murugarren E, Celaya AM, Girotto G, Vuckovic D, Mezzavilla M, Vilches C, Bodoy S, Sahún I, González L, Prat E, Zorzano A, Dierssen M, Varela-Nieto I, Gasparini P, Palacín M, Nunes V (2018) Mutations in L-type amino acid transporter-2 support SLC7A8 as a novel gene involved in age-related hearing loss. Elife 7.  https://doi.org/10.7554/eLife.31511 CrossRefGoogle Scholar
  15. Fang Y, Kolmakova-Partensky L, Miller C (2007) A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance. J Biol Chem 282:176–182.  https://doi.org/10.1074/jbc.M610075200 CrossRefPubMedGoogle Scholar
  16. Fang Y, Jayaram H, Shane T, Kolmakova-Partensky L, Wu F, Williams C, Xiong Y, Miller C (2009) Structure of a prokaryotic virtual proton pump at 3.2 Å resolution. Nature 460:1040–1043.  https://doi.org/10.1038/nature08201 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Feliubadaló L, Font M, Purroy J, Rousaud F, Estivill X, Nunes V, Golomb E, Centola M, Aksentijevich I, Kreiss Y, Goldman B, Pras M, Kastner DL, Pras E, Gasparini P, Bisceglia L, Beccia E, Gallucci M, de Sanctis L, Ponzone A, Rizzoni GF, Zelante L, Bassi MT, George AL Jr, Manzoni M, De Grandi A, Riboni M, Endsley JK, Ballabio A, Borsani G, Reig N, Fernández E, Estévez R, Pineda M, Torrents D, Camps M, Lloberas J, Zorzano A, Palacín M (1999) Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo, + AT) of rBAT. Nat Genet 23:52–57.  https://doi.org/10.1038/12652 CrossRefPubMedGoogle Scholar
  18. Forrest LR, Rudnick G (2009) The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology 24:377–386.  https://doi.org/10.1152/physiol.00030.2009 CrossRefPubMedGoogle Scholar
  19. Forrest LR, Krämer R, Ziegler C (2011) The structural basis of secondary active transport mechanisms. Biochim Biophys Acta 1807:167–188.  https://doi.org/10.1016/j.bbabio.2010.10.014 CrossRefPubMedGoogle Scholar
  20. Fotiadis D, Kanai Y, Palacín M (2013) The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 34:139–158.  https://doi.org/10.1016/j.mam.2012.10.007 CrossRefPubMedGoogle Scholar
  21. Gao X, Lu F, Zhou L, Dang S, Sun L, Li X, Wang J, Shi Y (2009) Structure and mechanism of an amino acid antiporter. Science 324:1565–1568.  https://doi.org/10.1126/science.1173654 CrossRefPubMedGoogle Scholar
  22. Gao X, Zhou L, Jiao X, Lu F, Yan C, Zeng X, Wang J, Shi Y (2010) Mechanism of substrate recognition and transport by an amino acid antiporter. Nature 463:828–832.  https://doi.org/10.1038/nature08741 CrossRefPubMedGoogle Scholar
  23. Geier EG, Schlessinger A, Fan H, Gable JE, Irwin JJ, Sali A, Giacomini KM (2013) Structure-based ligand discovery for the large-neutral amino acid transporter 1, LAT-1. Proc Natl Acad Sci USA 110:5480–5485.  https://doi.org/10.1073/pnas.1218165110 CrossRefPubMedGoogle Scholar
  24. Ghaddar K, Krammer E-M, Mihajlovic N, Brohée S, André B, Prévost M (2014a) Converting the yeast arginine can1 permease to a lysine permease. J Biol Chem 289:7232–7246.  https://doi.org/10.1074/jbc.M113.525915 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ghaddar K, Merhi A, Saliba E, Krammer E-M, Prévost M, André B (2014b) Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases. Mol Cell Biol 34:4447–4463.  https://doi.org/10.1128/MCB.00699-14 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ghasemitarei M, Yusupov M, Razzokov J, Shokri B, Bogaerts A (2019) Transport of cystine across xC antiporter. Arch Biochem Biophys 664:117–126.  https://doi.org/10.1016/j.abb.2019.01.039 CrossRefPubMedGoogle Scholar
  27. Giannella RA, Broitman SA, Zamcheck N (1972) Gastric acid barrier to ingested microorganisms in man: studies in vivo and in vitro. Gut 13:251–256.  https://doi.org/10.1136/gut.13.4.251 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gong S, Richard H, Foster JW (2003) YjdE (AdiC) is the arginine: agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J Bacteriol 185:4402–4409.  https://doi.org/10.1128/JB.185.15.4402-4409.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gournas C, Evangelidis T, Athanasopoulos A, Mikros E, Sophianopoulou V (2015) The Aspergillus nidulans proline permease as a model for understanding the factors determining substrate binding and specificity of fungal amino acid transporters. J Biol Chem 290:6141–6155.  https://doi.org/10.1074/jbc.M114.612069 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gournas C, Prévost M, Krammer E-M, André B (2016) Function and regulation of fungal amino acid transporters: insights from predicted structure. Adv Appl Microbiol.  https://doi.org/10.1007/978-3-319-25304-6_4 CrossRefGoogle Scholar
  31. Gournas C, Saliba E, Krammer E-M, Barthelemy C, Prévost M, André B (2017) Transition of yeast Can1 transporter to the inward-facing state unveils an α-arrestin target sequence promoting its ubiquitylation and endocytosis. Mol Biol Cell 28:2819–2832.  https://doi.org/10.1091/mbc.e17-02-0104 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gournas C, Athanasopoulos A, Sophianopoulou V (2018) On the evolution of specificity in members of the yeast amino acid transporter family as parts of specific metabolic pathways. Int J Mol Sci 19:1398.  https://doi.org/10.3390/ijms19051398 CrossRefPubMedCentralGoogle Scholar
  33. Hersh BM, Farooq FT, Barstad DN, Blankenhorn DL, Slonczewski JL (1996) A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol 178:3978–3981.  https://doi.org/10.1128/jb.178.13.3978-3981.1996 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hinz KM, Meyer K, Kinne A, Schülein R, Köhrle J, Krause G (2015) Structural insights into thyroid hormone transport mechanisms of the L-type amino acid transporter 2. Mol Endocrinol 29:933–942.  https://doi.org/10.1210/me.2015-1044 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hinz KM, Neef D, Rutz C, Furkert J, Köhrle J, Schülein R, Krause G (2017) Molecular features of the L-type amino acid transporter 2 determine different import and export profiles for thyroid hormones and amino acids. Mol Cell Endocrinol 443:163–174.  https://doi.org/10.1016/j.mce.2017.01.024 CrossRefPubMedGoogle Scholar
  36. Horák J, Ríhová L (1982) l-Proline transport in Saccharomyces cerevisiae. Biochim Biophys Acta 691:144–150CrossRefGoogle Scholar
  37. Ilgü H, Jeckelmann J-M, Gapsys V, Ucurum Z, de Groot BL, Fotiadis D (2016) Insights into the molecular basis for substrate binding and specificity of the wild-type l-arginine/agmatine antiporter AdiC. Proc Natl Acad Sci 113:10358–10363.  https://doi.org/10.1073/pnas.1605442113 CrossRefPubMedGoogle Scholar
  38. Ilgü H, Jeckelmann J-M, Colas C, Ucurum Z, Schlessinger A, Fotiadis D (2018) Effects of mutations and ligands on the thermostability of the l-arginine/agmatine antiporter AdiC and deduced insights into ligand-binding of human L-type amino acid transporters. Int J Mol Sci 19:918.  https://doi.org/10.3390/ijms19030918 CrossRefPubMedCentralGoogle Scholar
  39. Iyer R, Williams C, Miller C (2003) arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol 185:6556–6561.  https://doi.org/10.1128/JB.185.22.6556-6561.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jack DL, Paulsen IT, Saier MH (2000) The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146:1797–1814.  https://doi.org/10.1099/00221287-146-8-1797 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211:969–970.  https://doi.org/10.1038/211969a0 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kanda N, Abe F (2013) Structural and functional implications of the yeast high-affinity tryptophan permease Tat2. Biochemistry 52:4296–4307.  https://doi.org/10.1021/bi4004638 CrossRefPubMedGoogle Scholar
  43. Kashiwagi K, Suzuki T, Suzuki F, Furuchi T, Kobayashi H, Igarashi K (1991) Coexistence of the genes for putrescine transport protein and ornithine decarboxylase at 16 min on Escherichia coli chromosome. J Biol Chem 266:20922–20927PubMedGoogle Scholar
  44. Kashiwagi K, Shibuya S, Tomitori H, Kuraishi A, Igarashi K (1997) Excretion and uptake of putrescine by the PotE protein in Escherichia coli. J Biol Chem 272:6318–6323.  https://doi.org/10.1074/jbc.272.10.6318 CrossRefPubMedGoogle Scholar
  45. Kashiwagi K, Kuraishi A, Tomitori H, Igarashi A, Nishimura K, Shirahata A, Igarashi K (2000) Identification of the putrescine recognition site on polyamine transport protein PotE. J Biol Chem 275:36007–36012.  https://doi.org/10.1074/jbc.M006083200 CrossRefPubMedGoogle Scholar
  46. Kashiwagi K, Miyamoto S, Suzuki F, Kobayashi H, Igarashi K (2006) Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli. Proc Natl Acad Sci 89:4529–4533.  https://doi.org/10.1073/pnas.89.10.4529 CrossRefGoogle Scholar
  47. Kowalczyk L, Ratera M, Paladino A, Bartoccioni P, Errasti-Murugarren E, Valencia E, Portella G, Bial S, Zorzano A, Fita I, Orozco M, Carpena X, Vazquez-Ibar JL, Palacín M (2011) Molecular basis of substrate-induced permeation by an amino acid antiporter. Proc Natl Acad Sci 108:3935–3940.  https://doi.org/10.1073/pnas.1018081108 CrossRefPubMedGoogle Scholar
  48. Krammer E-M, Ghaddar K, André B, Prévost M (2016) Unveiling the mechanism of arginine transport through AdiC with molecular dynamics simulations: the guiding role of aromatic residues. PLoS ONE 11:e0160219.  https://doi.org/10.1371/journal.pone.0160219 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Krammer E-M, Gibbons A, Roos G, Prévost M (2018) Molecular mechanism of substrate selectivity of the arginine-agmatine antiporter AdiC. Sci. Rep 8:15607.  https://doi.org/10.1038/s41598-018-33963-1 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Krause G, Hinz KM (2017) Thyroid hormone transport across L-type amino acid transporters: what can molecular modelling tell us? Mol Cell Endocrinol 458:68–75.  https://doi.org/10.1016/j.mce.2017.03.018 CrossRefPubMedGoogle Scholar
  51. Krishnamurthy H, Piscitelli CL, Gouaux E (2009) Unlocking the molecular secrets of sodium-coupled transporters. Nature 459:347–355.  https://doi.org/10.1038/nature08143 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lin J, Lee IS, Frey J, Slonczewski JL, Foster JW (1995) Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol 177:4097–4104CrossRefGoogle Scholar
  53. Lu P, Ma D, Chen Y, Guo Y, Chen G-Q, Deng H, Shi Y (2013) l-Glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Res 23:635–644.  https://doi.org/10.1038/cr.2013.13 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lund P, Tramonti A, De Biase D (2014) Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 38:1091–1125.  https://doi.org/10.1111/1574-6976.12076 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ma D, Lu P, Yan C, Fan C, Yin P, Wang J, Shi Y (2012) Structure and mechanism of a glutamate—GABA antiporter. Nature 483:632–636.  https://doi.org/10.1038/nature10917 CrossRefPubMedGoogle Scholar
  56. Ma D, Lu P, Shi Y (2013) Substrate selectivity of the acid-activated glutamate/γ-aminobutyric acid (GABA) antiporter GadC from Escherichia coli. J Biol Chem 288:15148–15153.  https://doi.org/10.1074/jbc.M113.474502 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Napolitano L, Scalise M, Koyioni M, Koutentis P, Catto M, Eberini I, Parravicini C, Palazzolo L, Pisani L, Galluccio M, Console L, Carotti A, Indiveri C (2017) Potent inhibitors of human LAT1 (SLC7A5) transporter based on dithiazole and dithiazine compounds for development of anticancer drugs. Biochem Pharmacol 143:39–52.  https://doi.org/10.1016/j.bcp.2017.07.006 CrossRefPubMedGoogle Scholar
  58. Palazzolo L, Parravicini C, Laurenzi T, Guerrini U, Indiveri C, Gianazza E, Eberini I (2018) In silico description of LAT1 transport mechanism at an atomistic level. Front Chem 6:1–15.  https://doi.org/10.3389/fchem.2018.00350 CrossRefGoogle Scholar
  59. Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503:85–90.  https://doi.org/10.1038/nature12533 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Penmatsa A, Wang KH, Gouaux E (2015) X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nat Struct Mol Biol 22:506–508.  https://doi.org/10.1038/nsmb.3029 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pennacchietti E, Lammens TM, Capitani G, Franssen MCR, John RA, Bossa F, De Biase D (2009) Mutation of His 465 Alters the pH-dependent spectroscopic properties of Escherichia coli glutamate decarboxylase and broadens the range of its activity toward more alkaline pH. J Biol Chem 284:31587–31596.  https://doi.org/10.1074/jbc.M109.049577 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rautio J, Gynther M, Laine K (2013) LAT1-mediated prodrug uptake: a way to breach the blood–brain barrier? Ther Deliv 4:281–284.  https://doi.org/10.4155/tde.12.165 CrossRefPubMedGoogle Scholar
  63. Richard H, Foster JW (2004) Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol 186:6032–6041.  https://doi.org/10.1128/JB.186.18.6032-6041.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rolhion N, Chassaing B (2016) When pathogenic bacteria meet the intestinal microbiota. Philos Trans R Soc B Biol Sci 371:20150504.  https://doi.org/10.1098/rstb.2015.0504 CrossRefGoogle Scholar
  65. Rosell A, Meury M, Alvarez-Marimon E, Costa M, Perez-Cano L, Zorzano A, Fernandez-Recio J, Palacín M, Fotiadis D (2014) Structural bases for the interaction and stabilization of the human amino acid transporter LAT2 with its ancillary protein 4F2hc. Proc Natl Acad Sci 111:2966–2971.  https://doi.org/10.1073/pnas.1323779111 CrossRefPubMedGoogle Scholar
  66. Shaffer PL, Goehring A, Shankaranarayanan A, Gouaux E (2009) Structure and mechanism of a Na+ -independent amino acid transporter. Science 325:1010–1014.  https://doi.org/10.1126/science.1176088 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Shi Y (2013) Common folds and transport mechanisms of secondary active transporters. Annu Rev Biophys 42:51–72.  https://doi.org/10.1146/annurev-biophys-083012-130429 CrossRefPubMedGoogle Scholar
  68. Singh N, Ecker GF (2018) Insights into the structure, function, and ligand discovery of the large neutral amino acid transporter 1, lat1. Int J Mol Sci 19:1–32.  https://doi.org/10.3390/ijms19051278 CrossRefGoogle Scholar
  69. Soksawatmaekhin W, Kuraishi A, Sakata K, Kashiwagi K, Igarashi K (2004) Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol Microbiol 51:1401–1412.  https://doi.org/10.1046/j.1365-2958.2003.03913.x CrossRefPubMedGoogle Scholar
  70. Soksawatmaekhin W, Uemura T, Fukiwake N, Kashiwagi K, Igarashi K (2006) Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB. J Biol Chem 281:29213–29220.  https://doi.org/10.1074/jbc.M600754200 CrossRefPubMedGoogle Scholar
  71. Sophianopoulou V, Scazzocchio C (1989) The proline transport protein of Aspergillus nidulans is very similar to amino acid transporters of Saccharomyces cerevisiae. Mol Microbiol 3:705–714.  https://doi.org/10.1111/j.1365-2958.1989.tb00219.x CrossRefPubMedGoogle Scholar
  72. Tărlungeanu DC, Deliu E, Dotter CP, Kara M, Janiesch PC, Scalise M, Galluccio M, Tesulov M, Morelli E, Sonmez FM, Bilguvar K, Ohgaki R, Kanai Y, Johansen A, Esharif S, Ben-Omran T, Topcu M, Schlessinger A, Indiveri C, Duncan KE, Caglayan AO, Gunel M, Gleeson JG, Novarino G (2016) Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell 167:1481-1494.e18.  https://doi.org/10.1016/j.cell.2016.11.013 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  74. Torrents D, Mykkänen J, Pineda M, Feliubadaló L, Estévez R, de Cid R, Sanjurjo P, Zorzano A, Nunes V, Huoponen K, Reinikainen A, Simell O, Savontaus M-L, Aula P, Palacín M (1999) Identification of SLC7A7, encoding y+LAT-1, as the lysinuric protein intolerance gene. Nat Genet 21:293–296.  https://doi.org/10.1038/6809 CrossRefPubMedGoogle Scholar
  75. Tsai M-F, Miller C (2013) Substrate selectivity in arginine-dependent acid resistance in enteric bacteria. Proc Natl Acad Sci 110:5893–5897.  https://doi.org/10.1073/pnas.1301442110 CrossRefPubMedGoogle Scholar
  76. Tsai M-F, Fang Y, Miller C (2012) Sided functions of an arginine-agmatine antiporter oriented in liposomes. Biochemistry 51:1577–1585.  https://doi.org/10.1021/bi201897t CrossRefPubMedPubMedCentralGoogle Scholar
  77. Tsai M-F, McCarthy P, Miller C (2013) Substrate selectivity in glutamate-dependent acid resistance in enteric bacteria. Proc Natl Acad Sci 110:5898–5902.  https://doi.org/10.1073/pnas.1301444110 CrossRefPubMedGoogle Scholar
  78. Usami Y, Uemura S, Mochizuki T, Morita A, Shishido F, Inokuchi J, Abe F (2014) Functional mapping and implications of substrate specificity of the yeast high-affinity leucine permease Bap2. Biochim Biophys Acta 1838:1719–1729.  https://doi.org/10.1016/j.bbamem.2014.03.018 CrossRefPubMedGoogle Scholar
  79. Wang S, Yan R, Zhang X, Chu Q, Shi Y (2014) Molecular mechanism of pH-dependent substrate transport by an arginine-agmatine antiporter. Proc Natl Acad Sci 111:12734–12739.  https://doi.org/10.1073/pnas.1414093111 CrossRefPubMedGoogle Scholar
  80. Wang KH, Penmatsa A, Gouaux E (2015) Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521:322–327.  https://doi.org/10.1038/nature14431 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wong FH, Chen JS, Reddy V, Day JL, Shlykov MA, Wakabayashi ST, Saier MH Jr (2012) The amino acid-polyamine-organocation superfamily. J Mol Microbiol Biotechnol 22:105–113.  https://doi.org/10.1159/000338542 CrossRefPubMedGoogle Scholar
  82. Yan R, Zhao X, Lei J, Zhou Q (2019) Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex. Nature.  https://doi.org/10.1038/s41586-019-1011-z CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zomot E, Bahar I (2011) Protonation of glutamate 208 induces the release of agmatine in an outward-facing conformation of an arginine/agmatine antiporter. J Biol Chem 286:19693–19701.  https://doi.org/10.1074/jbc.M110.202085 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Structure et Fonction des Membranes BiologiquesUniversité Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations