Advertisement

A Mathematical Model of the Human Cardiac Na+ Channel

  • Tesfaye Negash Asfaw
  • Vladimir E. BondarenkoEmail author
Article
  • 19 Downloads

Abstract

Sodium ion channel is a membrane protein that plays an important role in excitable cells, as it is responsible for the initiation of action potentials. Understanding the electrical characteristics of sodium channels is essential in predicting their behavior under different physiological conditions. We investigated several Markov models for the human cardiac sodium channel NaV1.5 to derive a minimal mathematical model that describes the reported experimental data obtained using major voltage clamp protocols. We obtained simulation results for peak current–voltage relationships, the voltage dependence of normalized ion channel conductance, steady-state inactivation, activation and deactivation kinetics, fast and slow inactivation kinetics, and recovery from inactivation kinetics. Good agreement with the experimental data provides us with the mechanisms of the fast and slow inactivation of the human sodium channel and the coupling of its inactivation states to the closed and open states in the activation pathway.

Keywords

Markov model NaV1.5 channel Inactivation Recovery from inactivation Ion channel gating 

Notes

Acknowledgements

The authors thank Dr. Kelvin Rozier for proofreading the manuscript and giving helpful comments and the University System of Georgia (USG) for supporting Tesfaye Asfaw through the Tuition Assistance Program (TAP).

References

  1. Aiba T, Shimizu W, Inagaki M, Noda T, Miyoshi S, Ding WG, Zankov DP, Toyoda F, Matsuura H, Horie M, Sunagawa K (2005) Cellular and ionic mechanism for drug-induced long QT syndrome and effectiveness of verapamil. J Am Coll Cardiol 45:300–307CrossRefGoogle Scholar
  2. Armstrong CM, Bezanilla F (1977) Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol 70:567–590CrossRefGoogle Scholar
  3. Bähring R, Boland LM, Varghese A, Gebauer M, Pongs O (2001) Kinetic analysis of open- and closed-state inactivation transitions in human Kv4.2 A-type potassium channels. J Physiol 535:65–81CrossRefGoogle Scholar
  4. Bezanilla F, Armstrong CM (1977) Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol 70:549–566CrossRefGoogle Scholar
  5. Bondarenko VE (2014) A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes. PLoS ONE 9:e89113CrossRefGoogle Scholar
  6. Bondarenko VE, Bett GCL, Rasmusson RL (2004a) A model of graded calcium release and L-type Ca2+ channel inactivation in cardiac muscle. Am J Physiol Heart Circ Physiol 286:H1154–H1169CrossRefGoogle Scholar
  7. Bondarenko VE, Rasmusson RL (2010) Transmural heterogeneity of repolarization and Ca2+ handling in a model of mouse ventricular tissue. Am J Physiol Heart Circ Physiol 299:H454–H469CrossRefGoogle Scholar
  8. Bondarenko VE, Shilnikov AL (2017) Bursting dynamics in the normal and failing hearts. Sci Rep 7:5927CrossRefGoogle Scholar
  9. Bondarenko VE, Szigeti GP, Bett GCL, Kim SJ, Rasmusson RL (2004b) Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 287:H1378–H1403CrossRefGoogle Scholar
  10. Catterall WA (2014) Sodium channels, inherited epilepsy, and antiepileptic drugs. Annu Rev Pharmacol Toxicol 54:317–338CrossRefGoogle Scholar
  11. Clancy CE, Rudy Y (1999) Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 400:566–569CrossRefGoogle Scholar
  12. Clancy CE, Rudy Y (2002) Na+ channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation 105:1208–1213CrossRefGoogle Scholar
  13. Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol Heart Circ Physiol 275:H301–H321CrossRefGoogle Scholar
  14. Edwards AG, Grandi E, Hake JE, Patel S, Li P, Miyamoto S, Omens JH, Heller Brown J, Bers DM, McCulloch AD (2014) Nonequilibrium reactivation of Na+ current drives early afterdepolarizations in mouse ventricle. Circ Arrhythm Electrophysiol 7:1205–1213CrossRefGoogle Scholar
  15. Escayg A, MacDonald BT, Meisler MH, Baulac S, Huberfeld G, AnGourfinkel I, Brice A, Le Guern E, Moulard B, Chaigne D, Buresi C, Malafosse A (2000) Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS + 2. Nat Genet 24:343–345CrossRefGoogle Scholar
  16. Faber GM, Silva J, Livshitz L, Rudy Y (2007) Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation. Biophys J 92:1522–1543CrossRefGoogle Scholar
  17. Fink M, Noble D (2009) Markov models for ion channels: versatility versus identifiability and speed. Philos Trans A Math Phys Eng Sci 367:2161–2179CrossRefGoogle Scholar
  18. Fozzard HA (1992) Afterdepolarizations and triggered activity. Basic Res Cardiol 87(Suppl 2):105–113Google Scholar
  19. Grandi E, Morotti S, Ginsburg KS, Severi S, Bers DM (2010) Interplay of voltage and Ca-dependent inactivation of L-type Ca current. Prog Biophys Mol Biol 103:44–50CrossRefGoogle Scholar
  20. Grandi E, Pasqualini FS, Bers DM (2010) A novel computational model of the human ventricular action potential and Ca transient. J Mol Cell Cardiol 48:112–121CrossRefGoogle Scholar
  21. Groenendaal W, Ortega FA, Kherlopian AR, Zygmunt AC, Krogh-Madsen T, Christini DJ (2015) Cell-specific cardiac electrophysiology models. PLoS Comput Biol 11:e1004242CrossRefGoogle Scholar
  22. Haufe V, Cordeiro JM, Zimmer T, Wu YS, Schiccitano S, Benndorf K, Dumaine R (2005) Contribution of neuronal sodium channels to the cardiac fast sodium current is greater in dog heart Purkinje fibers than in ventricles. Cardiovasc Res 65:117–127CrossRefGoogle Scholar
  23. Henry H, Rappel WJ (2004) The role of M cells and the long QT syndrome in cardiac arrhythmias: simulation studies of reentrant excitations using a detailed electrophysiological model. Chaos 14:172–182CrossRefGoogle Scholar
  24. Hodgkin AL, Huxley AF (1952a) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472CrossRefGoogle Scholar
  25. Hodgkin AL, Huxley AF (1952b) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544CrossRefGoogle Scholar
  26. Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116:424–448CrossRefGoogle Scholar
  27. Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108:37–77CrossRefGoogle Scholar
  28. Irvine LA, Jafri MS, Winslow RL (1999) Cardiac sodium channel Markov model with temperature dependence and recovery from inactivation. Biophys J 76:1868–1885CrossRefGoogle Scholar
  29. Keener J, Sneyd J (2009) Mathematical physiology. I. Cellular physiology, 2nd edn. Springer, New York. Chapter 1.3CrossRefGoogle Scholar
  30. Kléber AG, Rudy Y (2004) Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 84:431–488CrossRefGoogle Scholar
  31. Krogh-Madsen T, Sobie EA, Christini DJ (2016) Improving cardiomyocytes model fidelity and utility via dynamic electrophysiology protocols and optimization algorithms. J Physiol 594:2525–2536CrossRefGoogle Scholar
  32. Moran O, Conti F, Tammaro P (2003) Sodium channel heterologous expression in mammalian cells and the role of the endogenous β1-subunits. Neurosci Lett 336:175–179CrossRefGoogle Scholar
  33. Nguyen TP, Wang DW, Rhodes TH, George AL Jr (2008) Divergent biophysical defects caused by mutant sodium channels in dilated cardiomyopathy with arrhythmia. Circ Res 102:364–371CrossRefGoogle Scholar
  34. O’Leary ME, Chen LQ, Kallen RG, Horn R (1995) Molecular link between activation and inactivation of sodium channels. J Gen Physiol 106:641–658CrossRefGoogle Scholar
  35. Petkova-Kirova PS, London B, Salama G, Rasmusson RL, Bondarenko VE (2012) Mathematical modeling mechanisms of arrhythmias in transgenic mouse heart overexpressing TNF-α. Am J Physiol Heart Circ Physiol 302:H934–H952CrossRefGoogle Scholar
  36. Remme CA (2013) Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects. J Physiol 591(Pt 17):4099–4116CrossRefGoogle Scholar
  37. Rozier K, Bondarenko VE (2017) Distinct physiological effects of β1- and β2-adrenoceptors in mouse ventricular myocytes: insights from a compartmentalized mathematical model. Am J Physiol Cell Physiol 312:C595–C623CrossRefGoogle Scholar
  38. Rozier K, Bondarenko VE (2018) Mathematical modeling physiological effects of the overexpression of β2-adrenoceptors in mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 314:H643–H658Google Scholar
  39. Vecchietti S, Rivolta I, Severi S, Napolitano C, Priori SG, Cavalcanti S (2006) Computer simulation of wild-type and mutant human cardiac Na+ current. Med Biol Eng Comput 44:35–44CrossRefGoogle Scholar
  40. Veldkamp MW, Viswanathan PC, Bezzina C, Baartscheer A, Wilde AA, Balser JR (2000) Two distinct congenital arrhythmias evoked by a multidysfunctional Na+ channel. Circ Res 86:E91–E97CrossRefGoogle Scholar
  41. Wang S, Bondarenko VE, Qu YJ, Bett GCL, Morales MJ, Rasmusson RL, Strauss HC (2005) Time- and voltage-dependent components of Kv4.3 inactivation. Biophys J 89:3026–3041CrossRefGoogle Scholar
  42. Wang S, Bondarenko VE, Qu Y, Morales MJ, Rasmusson RL, Strauss HC (2004) Activation properties of Kv4.3 channels: time, voltage and [K+]o dependence. J Physiol 557:705–717CrossRefGoogle Scholar
  43. Wang DW, Desai RR, Crotti L, Arnestad M, Insolia R, Pedrazzini M, Ferrandi C, Vege A, Rognum T, Schwartz PJ, George AL Jr (2007) Cardiac sodium channel dysfunction in sudden infant death syndrome. Circulation 115:368–376CrossRefGoogle Scholar
  44. Wang Y, Mi J, Lu K, Lu Y, Wang K (2015) Comparison of gating properties and use-dependent block of Nav1.5 and Nav1.7 channels by anti-arrhythmics mexiletine and lidocaine. PLoS ONE 10:e0128653CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tesfaye Negash Asfaw
    • 1
  • Vladimir E. Bondarenko
    • 1
    • 2
    Email author
  1. 1.Department of Mathematics and StatisticsGeorgia State UniversityAtlantaUSA
  2. 2.Neuroscience InstituteGeorgia State UniversityAtlantaUSA

Personalised recommendations