Thermal Fluctuations in Amphipol A8-35 Particles: A Neutron Scattering and Molecular Dynamics Study
- 247 Downloads
- 11 Citations
Abstract
Amphipols are a class of polymeric surfactants that can stabilize membrane proteins in aqueous solutions as compared to detergents. A8-35, the best-characterized amphipol to date, is composed of a polyacrylate backbone with ~35 % of the carboxylates free, ~25 % grafted with octyl side-chains, and ~40 % with isopropyl ones. In aqueous solutions, A8-35 self-organizes into globular particles with a molecular mass of ~40 kDa. The thermal dynamics of A8-35 particles was measured by neutron scattering in the 10-picosecond, 18-picosecond, and 1-nanosecond time-scales on natural abundance and deuterium-labeled molecules, which permitted to separate backbone and side-chain motions. A parallel analysis was performed on molecular dynamics trajectories (Perlmutter et al., Langmuir 27:10523–10537, 2011). Experimental results and simulations converge, from their respective time-scales, to show that A8-35 particles feature a more fluid hydrophobic core, predominantly containing the octyl chains, and a more rigid solvent-exposed surface, made up predominantly of the hydrophilic polymer backbone. The fluidity of the core is comparable to that of the lipid environment around proteins in the center of biological membranes, as also measured by neutron scattering. The biological activity of proteins depends sensitively on molecular dynamics, which itself is strongly dependent on the immediate macromolecular environment. In this context, the characterization of A8-35 particle dynamics constitutes a step toward understanding the effect of amphipols on membrane protein stability and function.
Keywords
Membrane proteins Surfactants Polymers Molecular dynamics QENSAbbreviations
- A8-35
An anionic amphipol of average molecular mass ~4.3 kDa, containing ~35 % free carboxylates, ~25 % octyl side-chains, and ~40 % isopropyl ones
- APol
Amphipol
- CAC
Critical association concentration
- DAPol
A8-35 with per-deuterated side-chains
- EINS
Elastic incoherent neutron scattering
- HAPol
Natural abundance A8-35
- INS
Inelastic neutron scattering
- MD
Molecular dynamics
- 〈Mn〉
Number-averaged molecular mass
- mQ water
Water purified on a A10 Advantage Millipore System
- MSD
Mean square displacement
- OmpA, OmpX
Respectively outer membrane proteins A and X from Escherichia coli
- QENS
Quasi-elastic neutron scattering
- RS
Stokes radius
- SANS
Small-angle neutron scattering
- SEC
Size exclusion chromatography
Notes
Acknowledgments
Particular thanks are due to Michael Marek Koza and Bernhard Frick, ILL local contacts on IN6 and IN16, respectively. This work was supported by the French Centre National de la Recherche Scientifique (CNRS), by Université Paris–7 Denis Diderot, and by Grant “DYNAMO”, ANR-11-LABX-0011-01 from the French “Initiative d’Excellence” Program. ‘Computational resources were provided by the Minnesota Supercomputing Institute (MSI).
References
- Althoff T, Mills DJ, Popot J-L, Kühlbrandt W (2011) Assembly of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664CrossRefGoogle Scholar
- Bée M (1988) Quasielastic neutron scattering: principles and applications in solid state chemistry. Biology and Materials Science Adam Hilger, PhiladelphiaGoogle Scholar
- Bowie JU (2001) Stabilizing membrane proteins. Curr Opin Struct Biol 11:397–402CrossRefGoogle Scholar
- Champeil P, Menguy T, Tribet C, Popot J-L, le Maire M (2000) Interaction of amphipols with the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 275:18623–18637CrossRefGoogle Scholar
- Charvolin D, Picard M, Huang L-S, Berry EA, Popot J-L (2014) Solution behavior and crystallization of cytochrome bc 1 in the presence of amphipols. J Membr Biol. doi: 10.1007/s00232-014-9694-4 CrossRefGoogle Scholar
- Etzkorn M, Zoonens M, Catoire LJ, Popot J-L, Hiller S (2014) How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus. J Membr Biol. doi: 10.1007/s00232-014-9657-9 CrossRefGoogle Scholar
- Feinstein HE, Tifrea D, Sun G, Popot J-L, de la Maza LM, Cocco MJ (2014) Long-term stability of a vaccine formulated with the amphipol-trapped major outer membrane protein from Chlamydia trachomatis. J Membr Biol. doi: 10.1007/s00232-014-9693-5 CrossRefGoogle Scholar
- Ferrand M, Dianoux AJ, Petry W, Zaccai G (1993) Thermal motions and function of bacte-rio-rhod-opsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc Natl Acad Sci USA 90:9668–9672CrossRefGoogle Scholar
- Fitter J, Lechner RE, Büldt G, Dencher NA (1996) Internal molecular motions of bacteriorhodopsin: hydration-induced flexibility studied by quasielastic incoherent neutron scattering using oriented purple membranes. Proc Natl Acad Sci USA 193:7600–7605CrossRefGoogle Scholar
- Fitter J, Lechner RE, Dencher NA (1997) Picosecond molecular motions in bacteriorhodopsin from neutron scattering. Biophys J 73:2126–2137CrossRefGoogle Scholar
- Frölich A, Gabel F, Jasnin M, Lehnert U, Oesterhelt D, Stadler AM, Tehei M, Weik M, Wood K, Zaccai G (2009) From shell to cell: neutron scattering studies of biological water dynamics and coupling to activity. Faraday Discuss 41:117–130 discussion 175-207CrossRefGoogle Scholar
- Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406CrossRefGoogle Scholar
- Giusti F, Popot J-L, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380CrossRefGoogle Scholar
- Giusti F, Rieger J, Catoire L, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford SE, Ashcroft AE, Popot J-L (2014) Synthesis, characterization and applications of a per-deuterated amphipol. J Membr Biol. doi: 10.1007/s00232-014-9656-x CrossRefGoogle Scholar
- Gohon Y, Popot J-L (2003) Membrane protein-surfactant complexes. Curr Opin Colloid Interface Sci 8:15–22CrossRefGoogle Scholar
- Gohon Y, Pavlov G, Timmins P, Tribet C, Popot J-L, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334CrossRefGoogle Scholar
- Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot J-L (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290CrossRefGoogle Scholar
- Gohon Y, Dahmane T, Ruigrok R, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot J-L, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J. 94:3523–3537CrossRefGoogle Scholar
- Huynh KW, Cohen MR, Moiseenkova-Bell VY (2014) Application of amphipols for structu-re-functional analysis of TRP channels. J Membr Biol. doi: 10.1007/s00232-014-9684-6 CrossRefGoogle Scholar
- Jasnin M, van Eijck L, Koza MM, Peters J, Laguri C, Lortat-Jacob H, Zaccai G (2010) Dynamics of heparan sulfate explored by neutron scattering. Phys Chem Chem Phys 12:3360–3362CrossRefGoogle Scholar
- Jorgensen WL, Jenson C (1998) Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: seeking a temperature of maximum density. J Comp Chem 19:1179–1186CrossRefGoogle Scholar
- Klauda JB, Kucerka N, Brooks BR, Pastor RW, Nagle JF (2006) Simulation-based methods for interpreting X-ray data from lipid bilayers. Biophys J 90:2796–2807CrossRefGoogle Scholar
- Kleinschmidt JH, Popot J-L (2014) Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys (in press)Google Scholar
- König S, Sackmann E (1996) Molecular and collective dynamics of lipid bilayers. Curr Opin Colloid Interface Sci 1:78–82CrossRefGoogle Scholar
- Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112CrossRefGoogle Scholar
- Liao M, Cao E, Julius D, Cheng Y (2014) Single particle electron cryo-microscopy of a mammalian ion channel. Curr Opin Struct Biol 27:1–7CrossRefGoogle Scholar
- MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WR III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
- Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824CrossRefGoogle Scholar
- Natali F, Castellano C, Pozzi D, Congiu-Castellano A (2005) Dynamic properties of an orient-ed lipid/DNA complex studied by neutron scattering. Biophys J 88:1081–1090CrossRefGoogle Scholar
- Perez J, Zanotti JM, Durand D (1999) Evolution of the internal dynamics of two globular proteins from dry powder to solution. Biophys J 77:454–469CrossRefGoogle Scholar
- Perlmutter JD, Drasler WJ, Xie W, Gao J, Popot J-L, Sachs JN (2011) All-atom and coarse-grained molecular dynamics simulations of a membrane protein stabilizing polymer. Langmuir 27:10523–10537CrossRefGoogle Scholar
- Perlmutter JD, Popot J-L, Sachs JN (2014) Molecular dynamics simulations of a membrane protein/amphipol complex. J Membr Biol. doi: 10.1007/s00232-014-9690-8 CrossRefGoogle Scholar
- Picard M, Dahmane T, Garrigos M, Gauron C, Giusti F, le Maire M, Popot J-L, Champeil P (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869CrossRefGoogle Scholar
- Planchard N, Point E, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet E, Zoonens M, Popot J-L, Catoire LJ (2014) The use of amphipols for solution NMR studies of membrane proteins: advantages and limitations as compared to other solubilizing media. J Membr Biol. doi: 10.1007/s00232-014-9654-z CrossRefGoogle Scholar
- Pocanschi C, Popot J-L, Kleinschmidt JH (2013) Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. Eur Biophys J 42:103–118CrossRefGoogle Scholar
- Polovinkin V, Balandin T, Volkov O, Round E, Borshchevskiy V, Utrobin P, von Stetten D, Royant A, Willbold D, Arzumanyan A, Popot J-L, Gordeliy V (2014) Nanoparticle surface enhanced Raman scattering of bacteriorhodopsin stabilized by amphipol A8-35. J Membr Biol. doi: 10.1007/s00232-014-9701-9 CrossRefGoogle Scholar
- Popot JL (2010) Amphipols, nanodiscs, and fluorinated surfactants: three non-conventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79:737–775CrossRefGoogle Scholar
- Popot J-L, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flötenmeyer M, Giusti F, Gohon Y, Hervé P, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574CrossRefGoogle Scholar
- Popot J-L, Althoff T, Bagnard D, Banères J-L, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Rappaport F, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408CrossRefGoogle Scholar
- Rogan PK, Zaccai G (1981) Hydration of purple membrane as a function of relative humidity. J Mol Biol 145:281–284CrossRefGoogle Scholar
- Rosenbusch JP (2001) Stability of membrane proteins: relevance for the selection of appropriate methods for high-resolution structure determinations. J Struct Biol 136:144–157CrossRefGoogle Scholar
- Stansfeld PJ, Jeffreys EE, Sansom MSP (2013) Multiscale simulations reveal conserved patterns of lipid interactions with aquaporins. Structure 21:810–819CrossRefGoogle Scholar
- Tehei M, Zaccai G (2005) Adaptation to extreme environments: macromolecular dynamics in complex systems. Biochim Biophys Acta 1724:404–410CrossRefGoogle Scholar
- Tehei M, Madern D, Pfister C, Zaccai G (2001) Fast dynamics of halophilic malate dehydrogenase and BSA measured by neutron scattering under various solvent conditions influencing protein stability. Proc Natl Acad Sci USA 98:14356–14361CrossRefGoogle Scholar
- Tehei M, Madern D, Franzetti B, Zaccai G (2005) Neutron scattering reveals the dynamic basis of protein adaptation to extreme temperature. J Biol Chem 280:40974–40979CrossRefGoogle Scholar
- Trapp M, Gutberlet T, Juranyi F, Unruh T, Demé B, Tehei M, Peters J (2010) Hydration dependent studies of highly aligned multilayer lipid membranes by neutron scattering. J Chem Phys 133:164505CrossRefGoogle Scholar
- Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci USA 93:15047–15050CrossRefGoogle Scholar
- Váró G, Lanyi JK (1991) Distortions in the photocycle of bacteriorhodopsin at moderate dehydration. Biophys J 59:313–322CrossRefGoogle Scholar
- Venkatesan M, Hirtzel CS, Rajagopalan R (1985) The effect of colloidal forces on the self-diffusion coefficients in strongly interacting dispersions. J Chem Phys 82:5685–5695CrossRefGoogle Scholar
- Weik M, Patzelt H, Zaccai G, Oesterhelt D (1998) Localization of glycolipids in membranes by in vivo labeling and neutron diffraction. Mol Cell 1:411–419CrossRefGoogle Scholar
- Zaccai G (1987) Structure and hydration of purple membranes in different conditions. J Mol Biol 194:569–572CrossRefGoogle Scholar
- Zaccai G (2011) Neutron scattering perspectives for protein dynamics. J Non-Cryst Solids 357:615–621CrossRefGoogle Scholar
- Zaccai G (2013) The ecology of protein dynamics. Curr Phys Chem 3:9–16CrossRefGoogle Scholar
- Zoonens M, Popot J-L (2014) Amphipols for each season. J Membr Biol. doi: 10.1007/s00232-014-9666-8 CrossRefGoogle Scholar
- Zoonens M, Catoire LJ, Giusti F, Popot J-L (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci USA 102:8893–8898CrossRefGoogle Scholar