The Journal of Membrane Biology

, Volume 247, Issue 9–10, pp 957–964 | Cite as

The Use of Amphipols for NMR Structural Characterization of 7-TM Proteins

  • Shantha Elter
  • Thomas Raschle
  • Sabine Arens
  • Aldino Viegas
  • Vladimir Gelev
  • Manuel EtzkornEmail author
  • Gerhard WagnerEmail author


While amphipols have been proven useful for refolding of seven transmembrane helical (7-TM) proteins including G-protein-coupled receptors (GPCRs) and it could be shown that an amphipol environment is in principle suitable for NMR structural studies of the embedded protein, high-resolution NMR insights into amphipol refolded and isotopically labeled GPCRs are still very limited. Here we report on the recent progress toward NMR structural studies of the melanocortin-2 and -4 receptors, two class A GPCRs which so far have not been reported to be incorporated into an amphipol environment. Making use of the established 7-TM protein bacteriorhodopsin (BR) we initially tested and optimized amphipol refolding conditions. Most promising conditions were transferred to the refolding of the two melanocortin receptors. Analytical-scale refolding experiments on the melanocortin-2 receptor show very similar behavior to the results obtained on BR. Using cell-free protein expression we could generate sufficient amounts of isotopically labeled bacteriorhodopsin as well as melanocortin-2 and -4 receptors for an initial NMR analysis. Upscaling of the amphipol refolding protocol to protein amounts needed for NMR structural studies was, however, not straightforward and impeded detailed NMR insights for the two GPCRs. While well-resolved and dispersed NMR spectra could only be obtained for bacteriorhodopsin, a comparison of NMR data recorded on the melanocortin-4 receptor in SDS and in an amphipol environment indicates that amphipol refolding induces larger structural modifications in the receptor.


Amphipathic polymers Solution-state NMR 7-TM proteins Bacteriorhodopsin Melanocortin receptor 



This work was supported by grants from the German Academic Exchange Service (DAAD) and the DFG (ET 103/2-1) to M. E. as well as grants from the NIH (GM094608, GM075879, EB002026 and S10 RR029236).

Supplementary material

232_2014_9669_MOESM1_ESM.pdf (165 kb)
Supplementary material 1 (PDF 165 kb)


  1. Arunmanee W, Harris JR, Lakey JH (2014) Outer membrane protein F stabilised with minimal amphipol forms linear arrays and LPS-dependent 2D crystals. J Membrane Biol. doi: 10.1007/s00232-014-9640-5 CrossRefGoogle Scholar
  2. Baneres JL, Popot JL, Mouillac B (2011) New advances in production and functional folding of G-protein-coupled receptors. Trends Biotechnol 29(7):314–322CrossRefGoogle Scholar
  3. Breit A, Buch TR, Boekhoff I, Solinski HJ, Damm E, Gudermann T (2011) Alternative G protein coupling and biased agonism: new insights into melanocortin-4 receptor signalling. Mol Cell Endocrinol 331:232–240CrossRefGoogle Scholar
  4. Catoire LJ, Damian M, Giusti F, Martin A, van Heijenoort C, Popot JL, Guittet E, Baneres JL (2010) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J Am Chem Soc 132:9049–9057CrossRefGoogle Scholar
  5. Charvolin D, Picard M, Huang LS, Berry EA, and Popot JL (2014) Solution behavior and crystallization of cytochrome bc1 in the presence of amphipols. J Membrane Biol (under review)Google Scholar
  6. Dahmane T, Damian M, Mary S, Popot JL, Baneres JL (2009) Amphipol-assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521CrossRefGoogle Scholar
  7. Dahmane T, Rappaport F, Popot JL (2013) Amphipol-assisted folding of bacteriorhodopsin in the presence or absence of lipids: functional consequences. Eur Biophys J 42:85–101CrossRefGoogle Scholar
  8. Etzkorn M, Raschle T, Hagn F, Gelev V, Rice AJ, Walz T, Wagner G (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21:394–401CrossRefGoogle Scholar
  9. Fani L, Bak S, Delhanty P, van Rossum EF, and van den Akker EL (2014) The melanocortin-4 receptor as target for obesity treatment: a systematic review of emerging pharmacological therapeutic options. Int J Obes (Lond) 38:163–169CrossRefGoogle Scholar
  10. Gohon Y, Pavlov G, Timmins P, Tribet C, Popot JL, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334CrossRefGoogle Scholar
  11. Gohon Y, Dahmane T, Ruigrok RW, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot JL et al (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537CrossRefGoogle Scholar
  12. Klammt C, Schwarz D, Dotsch V, Bernhard F (2007) Cell-free production of integral membrane proteins on a preparative scale. Methods Mol Biol 375:57–78PubMedGoogle Scholar
  13. Klammt C, Maslennikov I, Bayrhuber M, Eichmann C, Vajpai N, Chiu EJ, Blain KY, Esquivies L, Kwon JH, Balana B et al (2012) Facile backbone structure determination of human membrane proteins by NMR spectroscopy. Nat Methods 9:834–839CrossRefGoogle Scholar
  14. Liang L, Angleson JK, Dores RM (2013) Using the human melanocortin-2 receptor as a model for analyzing hormone/receptor interactions between a mammalian MC2 receptor and ACTH(1-24). Gen Comp Endocrinol 181:203–210CrossRefGoogle Scholar
  15. Mary S, Damian M, Rahmeh R, Marie J, Mouillac B, and Baneres JL (2014) Amphipols in G protein-coupled receptor pharmacology: What are they good for? J Membrane Biol. doi: 10.1007/s00232-014-9665-9 CrossRefGoogle Scholar
  16. Picard M, Dahmane T, Garrigos M, Gauron C, Giusti F, le Maire M, Popot JL, Champeil P (2006) Protective and inhibitory effects of various types of amphipols on the Ca2+-ATPase from sarcoplasmic reticulum: a comparative study. Biochemistry 45:1861–1869CrossRefGoogle Scholar
  17. Planchard N, Point E, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet E, Zoonens M, et al. (2014) The use of amphipols for solution NMR studies of membrane proteins: advantages and constraints as compared to other solubilizing media. J Membrane Biol. doi: 10.1007/s00232-014-9654-z CrossRefGoogle Scholar
  18. Pocanschi CL, Dahmane T, Gohon Y, Rappaport F, Apell HJ, Kleinschmidt JH, Popot JL (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45:13954–13961CrossRefGoogle Scholar
  19. Schneider B, Junge F, Shirokov VA, Durst F, Schwarz D, Dotsch V, Bernhard F (2010) Membrane protein expression in cell-free systems. Methods Mol Biol 601:165–186CrossRefGoogle Scholar
  20. Schwarz D, Junge F, Durst F, Frolich N, Schneider B, Reckel S, Sobhanifar S, Dotsch V, Bernhard F (2007) Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat Protoc 2:2945–2957CrossRefGoogle Scholar
  21. Tao YX (2010) The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr Rev 31:506–543CrossRefGoogle Scholar
  22. Tribet C, Diab C, Dahmane T, Zoonens M, Popot JL, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634CrossRefGoogle Scholar
  23. Zoonens M, Popot JL (2014) Amphipols for each season. J Membrane Biol. doi: 10.1007/s00232-014-9666-8 CrossRefGoogle Scholar
  24. Zoonens M, Catoire LJ, Giusti F, Popot JL (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci USA 102:8893–8898CrossRefGoogle Scholar
  25. Zoonens M, Giusti F, Zito F, Popot JL (2007) Dynamics of membrane protein/amphipol association studied by Forster resonance energy transfer: implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shantha Elter
    • 1
  • Thomas Raschle
    • 2
    • 4
  • Sabine Arens
    • 1
  • Aldino Viegas
    • 1
  • Vladimir Gelev
    • 3
  • Manuel Etzkorn
    • 1
    • 2
    Email author
  • Gerhard Wagner
    • 2
    Email author
  1. 1.Institute of Physical BiologyHeinrich-Heine-UniversityDüsseldorfGermany
  2. 2.Department of Biological Chemistry & Molecular PharmacologyHarvard Medical SchoolBostonUSA
  3. 3.Faculty of Chemistry and PharmacySofia UniversitySofiaBulgaria
  4. 4.BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations