The Journal of Membrane Biology

, Volume 247, Issue 9–10, pp 815–826 | Cite as

Functionalized Amphipols: A Versatile Toolbox Suitable for Applications of Membrane Proteins in Synthetic Biology

  • Eduardo Antonio Della Pia
  • Randi Westh Hansen
  • Manuela Zoonens
  • Karen L. MartinezEmail author


Amphipols are amphipathic polymers that stabilize membrane proteins isolated from their native membrane. They have been functionalized with various chemical groups in the past years for protein labeling and protein immobilization. This large toolbox of functionalized amphipols combined with their interesting physico-chemical properties give opportunities to selectively add multiple functionalities to membrane proteins and to tune them according to the needs. This unique combination of properties makes them one of the most versatile strategies available today for exploiting membrane proteins onto surfaces for various applications in synthetic biology. This review summarizes the properties of functionalized amphipols suitable for synthetic biology approaches.


Biosensors Self-assembly Protein immobilization Protein labeling Multiple functionalization 



Poly(sodium acrylate)-based amphipol comprising 35 % of free carboxylate, 25 % of octyl chains and 40 % of isopropyl groups




Biotinylated A8-35


Benzyl guanine




Critical micelle concentration


Deuterated A8-35

E. coli

Escherichia coli


Fluorescently labeled A8-35


Green fluorescent protein


G protein-coupled receptor


Hydrogenated A8-35


Histidine-tagged A8-35


Imidazol-tagged A8-35


Membrane proteins


Non-ionic glycosylated APol








Nitriloacetic acid


Oligodeoxynucleotide tagged A8-35


Perdeuterated A8-35


Cytochrome P450 oxidoreductase


Sulfonated APol


Surface plasmon resonance


Transmembrane domain of the Escherichia coli outer membrane protein A



We thank Jean-Luc Popot for fruitful discussions and feedback on the manuscript. This work was supported by the UNIK Synthetic Biology, funded by the Danish Ministry for Science, Technology and Innovation; by the Lundbeck Foundation Center for Biomembranes in Nanomedicine (CBN) and the Danish Agency for Science Technology and Innovation (The Danish Council for Strategic Research—ANaCell project), by the Centre National de la Recherche Scientifique (CNRS), by Paris-7 University (Sorbonne Paris Cité), and by the “Initiative d’Excellence” program from the French State (Grant “DYNAMO”, ANR-11-LABX-0011-01). E.D.P. is supported by a Danish Research Council fellowship award (FTP-12-132506). M.Z is a recipient of Projet International de Coopération Scientifique (APIC–DK, SURFAPol project) from the CNRS.


  1. Althoff T, Mills DJ, Popot J-L, Kühlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J 30:4652–4664CrossRefGoogle Scholar
  2. Andrell J, Tate CG (2013) Overexpression of membrane proteins in mammalian cells for structural studies. Mol Membr Biol 30:52–63CrossRefGoogle Scholar
  3. Baneres JL, Popot JL, Mouillac B (2011) New advances in production and functional folding of G-protein-coupled receptors. Trends Biotechnol 29:314–322CrossRefGoogle Scholar
  4. Basit H, Sharma KS, Van der Heyden A, Gondran C, Breyton C, Dumy P, Winnik FM, Labbe P (2012) Amphipol mediated surface immobilization of FhuA: a platform for label-free detection of the bacteriophage protein pb5. Chem Commun 48:6037–6039CrossRefGoogle Scholar
  5. Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS Lett 584:1721–1727CrossRefGoogle Scholar
  6. Bazzacco P, Billon-Denis E, Sharma KS, Catoire LJ, Mary S, Le Bon C, Point E, Baneres JL, Durand G, Zito F, Pucci B, Popot JL (2012) Nonionic homopolymeric amphipols: application to membrane protein folding, cell-free synthesis, and solution nuclear magnetic resonance. Biochemistry 51:1416–1430CrossRefGoogle Scholar
  7. Bechara C, Bolbach G, Bazzaco P, Sharma KS, Durand G, Popot J-L, Zito F, Sagan S (2012) Maldi-tof mass spectrometry analysis of amphipol-trapped membrane proteins. Anal Chem 84:6128–6135CrossRefGoogle Scholar
  8. Bieri C, Ernst OP, Heyse S, Hofmann KP, Vogel H (1999) Micropatterned immobilization of a G protein-coupled receptor and direct detection of G protein activation. Nat Biotechnol 17:1105–1108CrossRefGoogle Scholar
  9. Breyton C, Pucci B, Popot J-L (2010) Amphipols and fluorinated surfactants: two alternatives to detergents for studying membrane proteins in vitro. In: Mus-Veteau I (ed) Heterologous Expression of Membrane Proteins. Springer, Berlin, pp 219–245Google Scholar
  10. Catoire LJ, Zoonens M, van Heijenoort C, Giusti F, Popot JL, Guittet E (2009) Inter- and intramolecular contacts in a membrane protein/surfactant complex observed by heteronuclear dipole-to-dipole cross-relaxation. J Magn Reson 197:91–95CrossRefGoogle Scholar
  11. Catoire LJ, Damian M, Giusti F, Martin A, van Heijenoort C, Popot JL, Guittet E, Baneres JL (2010) Structure of a GPCR ligand in its receptor-bound state: Leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J Am Chem Soc 132:9049–9057CrossRefGoogle Scholar
  12. Champeil P, Menguy T, Tribet C, Popot J-L, le Maire M (2000) Interaction of amphipols with sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 275:18623–18637CrossRefGoogle Scholar
  13. Charvolin D, Perez JB, Rouviera F, Giusti F, Bazzacco P, Abdine A, Rappaport F, Martinez KL, Popot JL (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci USA 106:405–410CrossRefGoogle Scholar
  14. Charvolin D, Dezi M, Picard M, Huang LS, Berry EA, Popot JL (2014) Solution behavior and crystallization of cytochrome bc1 in the presence of amphipols. Submitted to the J Membrane BiolGoogle Scholar
  15. Cvetkov TL, Huynh KW, Cohen MR, Moiseenkova-Bell VY (2011) Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J Biol Chem 286:38168–38176CrossRefGoogle Scholar
  16. Dahmane T, Damian M, Mary S, Popot JL, Baneres JL (2009) Amphipol-Assisted in vitro folding of G protein-coupled receptors. Biochemistry 48:6516–6521CrossRefGoogle Scholar
  17. Damian M, Marie J, Leyris JP, Fehrentz JA, Verdie P, Martinez J, Baneres JL, Mary S (2012) High constitutive activity is an intrinsic feature of ghrelin receptor protein. A study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs. J Biol Chem 287:3630–3641CrossRefGoogle Scholar
  18. Della Pia EA, Holm JV, Lloret N, Le Bon C, Popot J-L, Zoonens M, Nygård J, Martinez KL (2014) A step closer to membrane protein multiplexed nanoarrays using biotin-doped polypyrrole. ACS Nano 8:1844–1853CrossRefGoogle Scholar
  19. Denisov I, Grinkova Y, Lazarides A, Sligar S (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126:3477–3487CrossRefGoogle Scholar
  20. Ferrandez Y, Dezi M, Bosco M, Urvoas A, Valerio M, Le Bon C, Giusti F, Broutin I, Durand G, Polidori A, Popot JL, Picard M, Minard P (2014) Amphipol-mediated screening of molecular ortheses specific for membrane protein targets. J Membrane Biol (submitted)Google Scholar
  21. Friedrich MG, Giess F, Naumann R, Knoll W, Ataka K, Heberle J, Hrabakova J, Murgida DH, Hildebrandt P (2004) Active site structure and redox processes of cytochrome c oxidase immobilised in a novel biomimetic lipid membrane on an electrode. Chem Commun 21:2376–2377CrossRefGoogle Scholar
  22. Fruh V, IJzerman AP, Siegal G (2011) How to catch a membrane protein in action: a review of functional membrane protein immobilization strategies and their applications. Chem Rev 111:640–656CrossRefGoogle Scholar
  23. Gautier A, Juillerat A, Heinis C, Correa IR, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136CrossRefGoogle Scholar
  24. Giusti F, Popot JL, Tribet C (2012) Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by forster resonance energy transfer and dynamic surface tension measurements. Langmuir 28:10372–10380CrossRefGoogle Scholar
  25. Giusti F, Kessler P, Westh Hansen R, Della Pia EA, Le Bon C, Mourier G, Popot J-L, Martinez KL, Zoonens M (2014a) Synthesis of polyhistidine- or Imidazole-bearing Amphipols and their use for immobilization of membrane proteins (in preparation)Google Scholar
  26. Giusti F, Rieger J, Catoire LJ, Qian S, Calabrese AN, Watkinson TG, Casiraghi M, Radford S, Ashcroft AE, Popot JL (2014b) Synthesis, characterization and applications of a perdeuterated amphipol. J Membrane Biol. doi: 10.1007/s00232-014-9656-x CrossRefGoogle Scholar
  27. Gohon Y, Pavlov G, Timmins P, Tribet C, Popot JL, Ebel C (2004) Partial specific volume and solvent interactions of amphipol A8-35. Anal Biochem 334:318–334CrossRefGoogle Scholar
  28. Gohon Y, Giusti F, Prata C, Charvolin D, Timmins P, Ebel C, Tribet C, Popot JL (2006) Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35. Langmuir 22:1281–1290CrossRefGoogle Scholar
  29. Gohon Y, Dahmane T, Ruigrok RWH, Schuck P, Charvolin D, Rappaport F, Timmins P, Engelman DM, Tribet C, Popot JL, Ebel C (2008) Bacteriorhodopsin/amphipol complexes: structural and functional properties. Biophys J 94:3523–3537CrossRefGoogle Scholar
  30. Goldsmith BR, Mitala JJ, Josue J, Castro A, Lerner MB, Bayburt TH, Khamis SM, Jones RA, Brand JG, Sligar SG, Luetje CW, Gelperin A, Rhodes PA, Discher BM, Johnson ATC (2011) Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 5:5408–5416CrossRefGoogle Scholar
  31. Gottschalk I, Li YM, Lundahl P (2000) Chromatography on cells: analyses of solute interactions with the glucose transporter Glut1 in human red cells adsorbed on lectin-gel beads. J Chromatogr B 739:55–62CrossRefGoogle Scholar
  32. Harding PJ, Hadingham TC, McDonnell JM, Watts A (2006) Direct analysis of a GPCR-agonist interaction by surface plasmon resonance. Eur Biophys J Biophys Lett 35:709–712CrossRefGoogle Scholar
  33. Hovers J, Potschies M, Polidori A, Pucci B, Raynal S, Bonneté F, Serrano-Vega MJ, Tate CG, Picot D, Pierre Y (2011) A class of mild surfactants that keep integral membrane proteins water-soluble for functional studies and crystallization. Mol Membr Biol 28:171–181CrossRefGoogle Scholar
  34. Iversen L, Cherouati N, Berthing T, Stamou D, Martinez KL (2008) Templated protein assembly on micro-contact-printed surface patterns. Use of the SNAP-tag protein functionality. Langmuir 24:6375–6381CrossRefGoogle Scholar
  35. Jensen K, Jensen PE, Moller BL (2011) Light-driven cytochrome p450 hydroxylations. ACS Chem Biol 6:533–539CrossRefGoogle Scholar
  36. Jonkheijm P, Weinrich D, Schroder H, Niemeyer CM, Waldmann H (2008) Chemical strategies for generating protein biochips. Angew Chem Int Ed 47:9618–9647CrossRefGoogle Scholar
  37. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11:367–379CrossRefGoogle Scholar
  38. Krueger AT, Imperiali B (2013) Fluorescent amino acids: modular building blocks for the assembly of new tools for chemical biology. ChemBioChem 14:788–799CrossRefGoogle Scholar
  39. Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W (2007) Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc Natl Acad Sci USA 104:20719–20724CrossRefGoogle Scholar
  40. Ladaviere C, Toustou M, Gulik-Krzywicki T, Tribet C (2001) Slow reorganization of small phosphatidylcholine vesicles upon adsorption of amphiphilic polymers. J Colloid Interface Sci 241:178–187CrossRefGoogle Scholar
  41. Laitinen OH, Nordlund HR, Hytonen VP, Kulomaa MS (2007) Brave new (strept)avidins in biotechnology. Trends Biotechnol 25:269–277CrossRefGoogle Scholar
  42. Le Bon C, Della Pia EA, Giusti F, Lloret N, Zoonens M, Martinez KL, Popot JL (2014a) Synthesis of an oligonucleotide-derivatized amphipol and its use to trap and immobilize membrane proteins. Nucleic Acid Research. doi: 10.1093/nar/gku250 CrossRefGoogle Scholar
  43. Le Bon C, Della Pia EA, Giusti F, Lloret N, Zoonens M, Martinez KL, Popot JL (2014b) Labeling and functionalizing amphipols for biological applications. J Membrane Biol. doi: 10.1007/s00232-014-9655-yl
  44. Leney AC, McMorran LM, Radford SE, Ashcroft AE (2012) Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal Chem 84:9841–9847CrossRefGoogle Scholar
  45. Liu YCC, Rieben N, Iversen L, Sorensen BS, Park J, Nygard J, Martinez KL (2010) Specific and reversible immobilization of histidine-tagged proteins on functionalized silicon nanowires. Nanotechnology 21:245105CrossRefGoogle Scholar
  46. Marks KM, Nolan GP (2006) Chemical labeling strategies for cell biology. Nat Methods 3:591–596CrossRefGoogle Scholar
  47. Martinez KL, Gohon Y, Corringer PJ, Tribet C, Merola F, Changeux JP, Popot JL (2002) Allosteric transitions of Torpedo acetylcholine receptor in lipids, detergent and amphipols: molecular interactions vs. physical constraints. FEBS Lett 528:251–256CrossRefGoogle Scholar
  48. Martinez KL, Meyer BH, Hovius R, Lundstrom K, Vogel H (2003) Ligand binding to G protein-coupled receptors in tethered cell membranes. Langmuir 19:10925–10929CrossRefGoogle Scholar
  49. Nagy JK, Hoffmann AK, Keyes MH, Gray DN, Oxenoid K, Sanders CR (2001) Use of amphipathic polymers to deliver a membrane protein to lipid bilayers. FEBS Lett 501:115–120CrossRefGoogle Scholar
  50. Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46:2059–2069CrossRefGoogle Scholar
  51. Niemeyer CM, Burger W, Hoedemakers RMJ (1998) Hybridization characteristics of biomolecular adaptors, covalent DNA streptavidin conjugates. Bioconjug Chem 9:168–175CrossRefGoogle Scholar
  52. Oh EH, Song HS, Park TH (2011) Recent advances in electronic and bioelectronic noses and their biomedical applications. Enzyme Microb Technol 48:427–437CrossRefGoogle Scholar
  53. Opačić M, Popot J-L, Durand G, Bosco M, Polidori A, Croce R (2014) Amphipols and photosynthetic pigment-protein complexes. J Membrane Biol (submitted)Google Scholar
  54. Perez JB, Martinez KL, Segura JM, Vogel H (2006) Supported cell-membrane sheets for functional fluorescence imaging of membrane proteins. Adv Funct Mater 16:306–312CrossRefGoogle Scholar
  55. Perlmutter JD, Drasler WJ, Xie WS, Gao JL, Popot JL, Sachs JN (2011) All-atom and coarse-grained molecular dynamics simulations of a membrane protein stabilizing polymer. Langmuir 27:10523–10537CrossRefGoogle Scholar
  56. Planchard N, Point E, Dahmane T, Giusti F, Renault M, Le Bon C, Durand G, Milon A, Guittet E, Zoonens M, Popot JL, Catoire LJ (2014) The use of amphipols for solution NMR studies of membrane proteins: advantages and limitations as compared to other media. J Membrane Biol. doi: 10.1007/s00232-014-9654-z CrossRefGoogle Scholar
  57. Pocanschi CL, Dahmane T, Gohon Y, Rappaport F, Apell HJ, Kleinschmidt JH, Popot JL (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45:13954–13961CrossRefGoogle Scholar
  58. Polovinkin V, Gushchin I, Balandin T, Chervakov P, Round E, Schevchenko V, Popov A, Borshchevskiy V, Popot JL, Gordeliy V (2014) High-resolution structure of a membrane protein by direct transfer from amphipol to lipid mesophase. J Membrane Biol (submitted)Google Scholar
  59. Popot JL (2010) Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu Rev Biochem 79(79):737–775CrossRefGoogle Scholar
  60. Popot JL, Berry EA, Charvolin D, Creuzenet C, Ebel C, Engelman DM, Flotenmeyer M, Giusti F, Gohon Y, Herve P, Hong Q, Lakey JH, Leonard K, Shuman HA, Timmins P, Warschawski DE, Zito F, Zoonens M, Pucci B, Tribet C (2003) Amphipols: polymeric surfactants for membrane biology research. Cell Mol Life Sci 60:1559–1574CrossRefGoogle Scholar
  61. Popot JL, Althoff T, Bagnard D, Baneres JL, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Cremel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kuhlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M (2011) Amphipols from A to Z. Annu Rev Biophys 40(40):379–408CrossRefGoogle Scholar
  62. Qu XL, Alvarez PJJ, Li QL (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946CrossRefGoogle Scholar
  63. Schmid EL, Tairi AP, Hovius R, Vogel H (1998) Screening ligands for membrane protein receptors by total internal reflection fluorescence: the 5-HT3 serotonin receptor. Anal Chem 70:1331–1338CrossRefGoogle Scholar
  64. Song HS, Kwon OS, Lee SH, Park SJ, Kim UK, Jang J, Park TH (2013) Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett 13:172–178CrossRefGoogle Scholar
  65. Tao H, Lee SC, Moeller A, Roy RS, Siu FY, Zimmermann J, Stevens RC, Potter CS, Carragher B, Zhang Q (2013) Engineered nanostructured β-sheet peptides protect membrane proteins. Nat Methods 10:759–761CrossRefGoogle Scholar
  66. Tifrea DF, Sun G, Pal S, Zardeneta G, Cocco MJ, Popot J-L, De la Maza LM (2011) Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine. Vaccine 29:4623–4631CrossRefGoogle Scholar
  67. Tribet C, Audebert R, Popot JL (1997) Stabilization of hydrophobic colloidal dispersions in water with amphiphilic polymers: application to integral membrane proteins. Langmuir 13:5570–5576CrossRefGoogle Scholar
  68. Tribet C, Diab C, Dahmane T, Zoonens M, Popot JL, Winnik FM (2009) Thermodynamic characterization of the exchange of detergents and amphipols at the surfaces of integral membrane proteins. Langmuir 25:12623–12634CrossRefGoogle Scholar
  69. Ujwal R, Bowie JU (2011) Crystallizing membrane proteins using lipidic bicelles. Methods 55:337–341CrossRefGoogle Scholar
  70. Vial F, Rabhi S, Tribet C (2005) Association of octyl-modified poly(acrylic acid) onto unilamellar vesicles of lipids and kinetics of vesicle disruption. Langmuir 21:853–862CrossRefGoogle Scholar
  71. Weber W, Fussenegger M (2012) Emerging biomedical applications of synthetic biology. Nat Rev Genet 13:21–35CrossRefGoogle Scholar
  72. Weinrich D, Jonkheijm P, Niemeyer CM, Waldmann H (2009) Applications of protein biochips in biomedical and biotechnological research. Angew Chem Int Ed 48:7744–7751CrossRefGoogle Scholar
  73. Yang Q, Lundahl P (1994) Steric immobilization of liposomes in chromatographic gel beads and incorporation of integral membrane-proteins into their lipid bilayers. Anal Biochem 218:210–221CrossRefGoogle Scholar
  74. Zoonens M, Catoire LJ, Giusti F, Popot JL (2005) NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci USA 102:8893–8898CrossRefGoogle Scholar
  75. Zoonens M, Giusti F, Zito F, Popot JL (2007) Dynamics of membrane protein/amphipol association studied by Förster resonance energy transfer: implications for in vitro studies of amphipol-stabilized membrane proteins. Biochemistry 46:10392–10404CrossRefGoogle Scholar
  76. Zoonens M, Zito F, Martinez KL, Popot JL (2014) Amphipols: a general introduction and some protocols. In: Mus-Veteau I (ed) Membrane proteins production for structural analysis. Springer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Eduardo Antonio Della Pia
    • 1
  • Randi Westh Hansen
    • 1
  • Manuela Zoonens
    • 2
  • Karen L. Martinez
    • 1
    Email author
  1. 1.Bio-Nanotechnology and Nanomedicine Laboratory, Department of Chemistry and Nano-Science CenterUniversity of CopenhagenCopenhagenDenmark
  2. 2.Institut de Biologie Physico-ChimiqueUMR 7099, CNRS/Université Paris-7ParisFrance

Personalised recommendations