Advertisement

The accuracy of laser flash analysis explored by finite element method and numerical fitting

  • Alexandra Philipp
  • Jonas F. Eichinger
  • Roland C. Aydin
  • Argyrios Georgiadis
  • Christian J. CyronEmail author
  • Markus RetschEmail author
Original
  • 43 Downloads

Abstract

Laser flash analysis (LFA) has become over the last decades a widely used standard technique to measure the thermal diffusivity of bulk materials under various conditions like different gases, atmospheric pressures, and temperatures. A curve fitting procedure forms the heart of LFA. This procedure bases on a mathematical model that should ideally account for inherent shortcomings of the experimental realization such as: duration of the heating pulse, heat losses to the environment and sample holder, non-opaque samples, and radiative heat transfer. The accuracy of the mathematical model and curve fitting algorithm underlying LFA defines an upper bound of the accuracy of LFA in general. Unfortunately, not much is known about the range of parameters and conditions for which this accuracy is acceptable. In this paper, we examine the limits of accuracy of LFA resulting from its underlying computational framework. To this end, we developed a particularly accurate and comprehensive computational framework and applied it to data from simulated experiments. We quantify the impact of different (simulated) experimental conditions on the accuracy of the results by comparing the fit results of our computational framework to the known simulation input parameters. This way we demonstrate that a state-of-the-art computational framework for LFA admits determining thermal conductivities of materials in a broad range from at least 0.16 W/mK to 238 W/mK with relative errors typically well below 4% even in the presence of common undesired experimental side effects.

Notes

Acknowledgments

This project was funded by the Lichtenberg Professorship provided by the Volkswagen Foundation.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

231_2019_2742_MOESM1_ESM.docx (877 kb)
ESM 1 (DOCX 877 kb)

References

  1. 1.
    Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32(9):1679–1684.  https://doi.org/10.1063/1.1728417 CrossRefGoogle Scholar
  2. 2.
    Righini F, Cezairliyan A (1973) Pulse method of thermal diffusivity measurements. High Temp-High Press 5:481–501Google Scholar
  3. 3.
    Degiovanni A (1977) Diffusivité et méthode flash. Rev Gen Therm 185:420–442Google Scholar
  4. 4.
    Taylor RE (1979) Heat-pulse thermal diffusivity measurements. High Temp-High Press 11(1):43–58MathSciNetGoogle Scholar
  5. 5.
    Balageas DL (1989) Thermal diffusivity measurement by pulsed methods. High Temp-High Press 21:85–96Google Scholar
  6. 6.
    Maglić K, Taylor R (1992) The apparatus for thermal diffusivity measurement by the laser pulse method. In: Compendium of thermophysical property measurement methods. Springer, pp 281–314Google Scholar
  7. 7.
    Sheindlin M, Halton D, Musella M, Ronchi C (1998) Advances in the use of laser-flash techniques for thermal diffusivity measurement. Rev Sci Instrum 69(3):1426–1436.  https://doi.org/10.1063/1.1148776 CrossRefGoogle Scholar
  8. 8.
    Baba T, Ono A (2001) Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements. Meas Sci Technol 12(12):2046CrossRefGoogle Scholar
  9. 9.
    Vozár L (2001) Flash method for thermal diffusivity measurement: theory and praxis. Constantine the Philosopher University, NitraGoogle Scholar
  10. 10.
    Vozár L, Hohenauer W (2004) Flash method of measuring the thermal diffusivity. A review. High Temp-High Press 36(3):253–264CrossRefGoogle Scholar
  11. 11.
    Wiener M, Reichenauer G, Braxmeier S, Hemberger F, Ebert H-P (2009) Carbon aerogel-based high-temperature thermal insulation. Int J Thermophys 30(4):1372–1385.  https://doi.org/10.1007/s10765-009-0595-1 CrossRefGoogle Scholar
  12. 12.
    Nutz FA, Retsch M (2017) Tailor-made temperature-dependent thermal conductivity via interparticle constriction. Sci Adv 3(11):eaao5238.  https://doi.org/10.1126/sciadv.aao5238 CrossRefGoogle Scholar
  13. 13.
    Ruckdeschel P, Philipp A, Kopera BAF, Bitterlich F, Dulle M, Pech-May NW, Retsch M (2018) Thermal transport in binary colloidal glasses: composition dependence and percolation assessment. Phys Rev E 97(2-1):022612.  https://doi.org/10.1103/PhysRevE.97.022612 CrossRefGoogle Scholar
  14. 14.
    Li T, Song J, Zhao X, Yang Z, Pastel G, Xu S, Jia C, Dai J, Chen C, Gong A, Jiang F, Yao Y, Fan T, Yang B, Wågberg L, Yang R, Hu L (2018) Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci Adv 4(3):eaar3724.  https://doi.org/10.1126/sciadv.aar3724 CrossRefGoogle Scholar
  15. 15.
    Quill TJ, Smith MK, Zhou T, Baioumy MGS, Berenguer JP, Cola BA, Kalaitzidou K, Bougher TL (2018) Thermal and mechanical properties of 3D printed boron nitride – ABS composites. Appl Compos Mater 25(5):1205–1217.  https://doi.org/10.1007/s10443-017-9661-1 CrossRefGoogle Scholar
  16. 16.
    Chau M, Kopera BAF, Machado VR, Tehrani SM, Winnik MA, Kumacheva E, Retsch M (2017) Reversible transition between isotropic and anisotropic thermal transport in elastic polyurethane foams. Mater Horiz 4(2):236–241.  https://doi.org/10.1039/C6MH00495D CrossRefGoogle Scholar
  17. 17.
    Mendelsohn AR (1963) The effect of heat loss on the flash method of determining thermal diffusivity. Appl Phys Lett 2(1):19–21.  https://doi.org/10.1063/1.1753717 CrossRefGoogle Scholar
  18. 18.
    Cowan RD (1963) Pulse method of measuring thermal diffusivity at high temperatures. J Appl Phys 34(4):926–927.  https://doi.org/10.1063/1.1729564 CrossRefGoogle Scholar
  19. 19.
    Cape JA, Lehman GW (1963) Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity. J Appl Phys 34(7):1909–1913.  https://doi.org/10.1063/1.1729711 CrossRefGoogle Scholar
  20. 20.
    Watt DA (1966) Theory of thermal diffusivity by pulse technique. Br J Appl Phys 17(2):231CrossRefGoogle Scholar
  21. 21.
    Clark III LM, Taylor RE (1975) Radiation loss in the flash method for thermal diffusivity. J Appl Phys 46(2):714–719.  https://doi.org/10.1063/1.321635 CrossRefGoogle Scholar
  22. 22.
    Degiovanni A (1985) Identification de la diffusivité thermique par l’utilisation des moments temporels partiels. High Temp-High Press 17:683–689Google Scholar
  23. 23.
    Balageas DL (1982) Nouvelle méthode d'interprétation des thermogrammes pour la détermination de la diffusivité thermique par la méthode impulsionnelle (méthode « flash »). Rev Phys Appl 17(4):227–237.  https://doi.org/10.1051/rphysap:01982001704022700 CrossRefGoogle Scholar
  24. 24.
    Josell D, Warren J, Cezairliyan A (1995) Comment on “analysis for determining thermal diffusivity from thermal pulse experiments”. J Appl Phys 78(11):6867–6869.  https://doi.org/10.1063/1.360452 CrossRefGoogle Scholar
  25. 25.
    Larson KB, Koyama K (1967) Correction for finite-pulse-time effects in very thin samples using the flash method of measuring thermal diffusivity. J Appl Phys 38(2):465–474.  https://doi.org/10.1063/1.1709360 CrossRefGoogle Scholar
  26. 26.
    Taylor RE, Clark LM III (1974) Finite pulse time effects in flash diffusivity method. High Temp-High Press 6:65–72Google Scholar
  27. 27.
    Azumi T, Takahashi Y (1981) Novel finite pulse-width correction in flash thermal diffusivity measurement. Rev Sci Instrum 52(9):1411–1413.  https://doi.org/10.1063/1.1136793 CrossRefGoogle Scholar
  28. 28.
    Xue J, Liu X, Lian Y, Taylor R (1993) The effects of a finite pulse time in the flash thermal diffusivity method. Int J Thermophys 14 (1):123-133.  https://doi.org/10.1007/bf00522666 CrossRefGoogle Scholar
  29. 29.
    Heckman RC (1973) Finite pulse-time and heat-loss effects in pulse thermal diffusivity measurements. J Appl Phys 44(4):1455–1460.  https://doi.org/10.1063/1.1662393 CrossRefGoogle Scholar
  30. 30.
    Lechner T, Hahne E (1993) Finite pulse time effects in flash diffusivity measurements. Thermochim Acta 218:341–350.  https://doi.org/10.1016/0040-6031(93)80434-c CrossRefGoogle Scholar
  31. 31.
    Dusza L (1995) Combined solution of the simultaneous heat loss and finite pulse corrections with the laser flash method. High Temp-High Press 27/28(5):467–473CrossRefGoogle Scholar
  32. 32.
    Blumm J, Henderson J, Nilsson O, Fricke J (1997) Laser flash measurement of the phononic thermal diffusivity of glasses in the presence of ballistic radiative transfer. High Temp-High Press 29:555–560.  https://doi.org/10.1068/htec141 CrossRefGoogle Scholar
  33. 33.
    Tischler M, Kohanoff JJ, Rangugni GA, Ondracek G (1988) Pulse method of measuring thermal diffusivity and optical absorption depth for partially transparent materials. J Appl Phys 63(5):1259–1264.  https://doi.org/10.1063/1.339950 CrossRefGoogle Scholar
  34. 34.
    Araki N (1990) Effect of radiation heat transfer on thermal diffusivity measurements. Int J Thermophys 11(2):329–337.  https://doi.org/10.1007/bf01133565 CrossRefGoogle Scholar
  35. 35.
    Andre S, Degiovanni A (1995) A theoretical study of the transient coupled conduction and radiation heat transfer in glass: phonic diffusivity measurements by the flash technique. Int J Heat Mass Transf 38(18):3401–3412.  https://doi.org/10.1016/0017-9310(95)00075-K CrossRefGoogle Scholar
  36. 36.
    Hofmann R, Hahn O, Raether F, Mehling H, Fricke J (1997) Determination of thermal diffusivity in diathermic materials by the laser-flash technique. High Temp-High Press 29(6):703–710.  https://doi.org/10.1068/htrt115 CrossRefGoogle Scholar
  37. 37.
    Hahn O, Raether F, Arduini-Schuster MC, Fricke J (1997) Transient coupled conductive/radiative heat transfer in absorbing, emitting and scattering media: application to laser-flash measurements on ceramic materials. Int J Heat Mass Transf 40(3):689–698.  https://doi.org/10.1016/0017-9310(96)00137-8 CrossRefGoogle Scholar
  38. 38.
    Andre S, Degiovanni A (1998) A new way of solving transient radiative-conductive heat transfer problems. J Heat Transf 120(4):943–955.  https://doi.org/10.1115/1.2825914 CrossRefGoogle Scholar
  39. 39.
    Mehling H, Hautzinger G, Nilsson O, Fricke J, Hofmann R, Hahn O (1998) Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new analytical model. Int J Thermophys 19(3):941–949.  https://doi.org/10.1023/a:1022611527321 CrossRefGoogle Scholar
  40. 40.
    McMasters RL, Beck JV, Dinwiddie RB, Wang H (1999) Accounting for penetration of laser heating in flash thermal diffusivity experiments. J Heat Transf 121(1):15–21.  https://doi.org/10.1115/1.2825929 CrossRefGoogle Scholar
  41. 41.
    Lazard M, André S, Maillet D, Degiovanni A (2000) Radiative and conductive heat transfer: a coupled model for parameter estimation. High Temp-High Press 32(1):9–17CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of BayreuthBayreuthGermany
  2. 2.Institute for Computational MechanicsTechnical University of MunichGarching b. MunichGermany
  3. 3.Institute of Continuum MechanicsHamburg University of TechnologyHamburgGermany
  4. 4.Institute of Materials Research, Materials MechanicsHelmholtz-Zentrum GeesthachtGeesthachtGermany

Personalised recommendations