Advertisement

Numerical study of an impinging jet in cross-flow within and without influence of vortex generator structures on heat transfer

  • Ardalan JavadiEmail author
Original

Abstract

An impinging jet heat transfer in cross-flow within and without influence of a vortex generator pair (VGP) is studied using the unsteady Reynolds averaged Navier-Stokes (URANS) and the large-eddy simulation (LES). The jet Reynolds number is 15,000 and the cross-flow Reynolds number is 30,000. The elliptic-blending Reynolds stress model (EBRSM) is implemented and adapted to capture the effect of the jet close to the wall. A v2f model is also implemented to study the ability in predicting such a benchmark. Both models benefit from the elliptic relaxation equation in the entire computational domain. The URANS results are compared with the accurate results of the LES method and also the experimental data. The URANS method successfully presents the flow features of the impinging jet while underpredicts the enhancing heat transfer over the channel bottom wall. The URANS method fails to correctly predict the flow structures forming around the impinging region, because the method is more diffusive than the LES method. When manipulating VGP, a rectangular winglet vortex generator pair is placed in the cross-flow channel and upstream of the jet nozzle to enhance the impinging heat transfer. The VGP increases the Nusselt number at the impingement region. The structures generated by the VGP alter the effects of the cross-flow on the impinging heat transfer. There are Kelvin-Helmholtz instabilities at the shear layer of the jet and the cross-flow in the base flow (the flow without VGP). These instabilities are altered in the flow with VGP. A swirl component is added in the jet to study the effects on the heat transfer. The result shows that for a high or moderate level of swirl, the jet is diffused before the impinging.

Keywords

LES URANS Heat transfer Vortex generator Impingement cooling Cross-flow 

Notes

References

  1. 1.
    Wang C, Wang Z, Wang L, Luo L, Sundén B (2019) Experimental study of fluid flow and heat transfer of jet impingement in cross-flow with a vortex generator pair. Int J Heat Mass Transfer 135:935–949Google Scholar
  2. 2.
    Hadžiabdić M, Hanjalić K (2008) Vortical structures and heat transfer in a round impinging jet. J Fluid Mech 596:221–260.  https://doi.org/10.1017/S002211200700955X zbMATHGoogle Scholar
  3. 3.
    Chauhan R, Singh T, Thakur N, Kumar N, Kumar R, Kumar A (2018) Heat transfer augmentation in solar thermal collectors using impinging air jets: a comprehensive review. Renew Sust Energ Rev 82:3179–3190Google Scholar
  4. 4.
    Mahesh K (2013) The interaction of jets with crossflow. Annu Rev Fluid Mech 45:379–407MathSciNetzbMATHGoogle Scholar
  5. 5.
    Liu Y-H, Song S-J, Lo Y-H (2013) Jet impingement heat transfer on target surfaces with longitudinal and transverse grooves. Int J Heat Mass Transf 58(1):292–299.  https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.042 Google Scholar
  6. 6.
    Zuckerman N, Lior N (2006) Jet impingement heat transfer: physics, correlations, and numerical modeling. Adv Heat Tran 39:565–631.  https://doi.org/10.1016/S0065-2717(06)39006-5 Google Scholar
  7. 7.
    Caulfield C, Peltier W (2000) The anatomy of the mixing transition in homogeneous and stratified free shear layers. J Fluid Mech 413:1–47MathSciNetzbMATHGoogle Scholar
  8. 8.
    Lugt HJ (1983) Vortex flow in nature and technology, vol 1. Wiley-Interscience, New York, p 305. Translation., 1983.  https://doi.org/10.1017/S0022112084221447 Google Scholar
  9. 9.
    Uddin N, Neumann SO, Weigand B (2013) LES simulations of an impinging jet: on the origin of the second peak in the nusselt number distribution. Int J Heat Mass Transf 57(1):356–368.  https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.052 Google Scholar
  10. 10.
    Yang L, Ren J, Jiang H, Ligrani P (2014) Experiment al and numerical investigation of unsteady impingement cooling within a blade leading edge passage. Int J Heat Mass Transf 71:57–68.  https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.006 Google Scholar
  11. 11.
    Xing Y, Spring S, Weigand B (2011) Experimental and numerical investigation of impingement heat transfer on a flat and micro-rib roughened plate with different crossflow schemes. Int J Therm Sci 50(7):1293–1307.  https://doi.org/10.1016/j.ijthermalsci.2010.11.008 Google Scholar
  12. 12.
    Worth NA, Yang Z (2006) Simulation of an impinging jet in a crossflow using a Reynolds stress transport model. Int J Numer Methods Fluids 52(2):199–211zbMATHGoogle Scholar
  13. 13.
    Schlegel F, Wee D, Marzouk YM, Ghoniem AF (2011) Contributions of the wall boundary layer to the formation of the counter-rotating vortex pair in transverse jets. J Fluid Mech 676:461–490.  https://doi.org/10.1017/jfm.2011.59 MathSciNetzbMATHGoogle Scholar
  14. 14.
    Javadi A, El-Askary WA (2012) Numerical prediction of turbulent flow structure generated by a synthetic cross-jet into a turbulent boundary layer. Int J Numer Methods Fluids 69(7):1219–1236.  https://doi.org/10.1002/fld.2632 MathSciNetzbMATHGoogle Scholar
  15. 15.
    Zang B, New TH (2017) Near-field dynamics of parallel twin jets in cross-flow. Phys Fluids 29(3):035103Google Scholar
  16. 16.
    Karagozian AR (2014) The jet in crossflow. Phys Fluids 26(10): 1–47Google Scholar
  17. 17.
    Wen M-Y, Jang K-J (2003) An impingement cooling on a flat surface by using circular jet with longitudinal swirling strips. Int J Heat Mass Transf 46(24):4657–4667.  https://doi.org/10.1016/S0017-9310(03)00302-8 Google Scholar
  18. 18.
    Gupta AK, Lilley DG, Syred N (1984) Swirl flows. Abacus Press, Tunbridge Wells, p 488Google Scholar
  19. 19.
    Javadi A, Nilsson H (2015) LES and DES of strongly swirling turbulent flow through a suddenly expanding circular pipe. Comput Fluids 107:301–313.  https://doi.org/10.1016/j.compfluid.2014.11.014 zbMATHGoogle Scholar
  20. 20.
    Javadi A, Bosioc A, Nilsson H, Muntean S, Susan-Resiga R (2016) Experimental and numerical investigation of the precessing helical vortex in a conical diffuser, with rotor–stator interaction. ASME J Fluids Eng 138(8):081106.  https://doi.org/10.1115/1.4033416 Google Scholar
  21. 21.
    Javadi A, Nilsson H (2015) Time-accurate numerical simulations of swirling flow with rotor-stator interaction. Flow Turbul Combust 95(4):755–774.  https://doi.org/10.1007/s10494-015-9632-2 Google Scholar
  22. 22.
    Javadi A, Nilsson H (2017) Detailed numerical investigation of a Kaplan turbine with rotor-stator interaction using turbulence-resolving simulations. Int J Heat Fluid Flow 63:1–13.  https://doi.org/10.1016/j.ijheatfluidflow.2016.11.010 Google Scholar
  23. 23.
    Wang C (2016) Experimental study of outlet guide vane heat transfer and gas turbine internal cooling, Ph.D. thesis, Lund University. https://lup.lub.lu.se/search/publication/dbf4ad95-1adb-4f3a-bfb4-4958f166213e
  24. 24.
    Durbin PA (1991) Near-wall turbulence closure modeling without damping functions. Theor Comput Fluid Dyn 3(1):1–13MathSciNetzbMATHGoogle Scholar
  25. 25.
    Lien F-S, Kalitzin G (2001) Computations of transonic flow with the v 2f turbulence model. Int J Heat Fluid Flow 22(1):53–61Google Scholar
  26. 26.
    Manceau R, Hanjalić K (2002) Elliptic blending model: a new near-wall reynolds-stress turbulence closure. Phys Fluids 14(2):744–754zbMATHGoogle Scholar
  27. 27.
    Javadi A Implementation of Elliptic Blending Reynolds Stress model in OpenFOAM, Technical internal report in CFD with Open software courseGoogle Scholar
  28. 28.
    Thielen L, Hanjalić K, Jonker H, Manceau R (2005) Predictions of flow and heat transfer in multiple impinging jets with an elliptic-blending second-moment closure. Int J Heat Mass Transfer 48(8):1583–1598zbMATHGoogle Scholar
  29. 29.
    Nicoud F, Ducros F (1999) Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul Combust 62(3):183–200.  https://doi.org/10.1023/A:1009995426001 zbMATHGoogle Scholar
  30. 30.
    Schumann U (1975) Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J Comput Phys 18(4):376–404zbMATHGoogle Scholar
  31. 31.
    Pope SB (2001) Turbulent flows. Cambridge University Press, Cambridge. http://www.cambridge.org/catalogue/catalogue.asp?isbn=0521598869 zbMATHGoogle Scholar
  32. 32.
    Lund TS, Wu X, Squires KD (1998) Generation of turbulent inflow data for spatially-developing boundary layer simulations. J Comput Phys 140(2):233–258.  https://doi.org/10.1006/jcph.1998.5882 MathSciNetzbMATHGoogle Scholar
  33. 33.
    Klein M, Sadiki A, Janicka J (2003) A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J Comput Phys 186:652–665.  https://doi.org/10.1016/S0021-9991(03)00090-1 zbMATHGoogle Scholar
  34. 34.
    Wang C, Luo L, Wang L, Sundén B (2016) Effects of vortex generators on the jet impingement heat transfer at different cross-flow reynolds numbers. Int J Heat Mass Transfer 96:278–286Google Scholar
  35. 35.
    Barata JM, Neves FM, Vieira DF, Silva AR, et al (2014) Experimental study of two impinging jets aligned with a cross-flow. J Mod Phys 5(16):1779Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mechanical and Mechatronics Engineering DepartmentUniversity of WaterlooWaterlooCanada

Personalised recommendations