Advertisement

Heat and Mass Transfer

, Volume 55, Issue 12, pp 3711–3720 | Cite as

Effects of EHD on the flow and heat transfer characteristics in a rectangular corrugated channel

  • H. M. DeylamiEmail author
Original Article
  • 41 Downloads

Abstract

The electrohydrodynamic (EHD) effects on the flow field and forced convection heat transfer in a rectangular corrugated channel is numerically investigated in the present study. The numerical results are validated against experimental data for the smooth channel. The simulation results qualitatively agree with the experimental measurements. It is observed that in the presence of EHD in the rectangular corrugated channel, the thermal enhancement index at higher aspect ratios becomes better rather than the lower ones. Also, the application of the corona voltage, yields a stronger recirculation zone and causes a greater increment in the heat transfer rate.

Keywords

Electrohydrodynamic Heat transfer Forced convection Corrugated Channel 

Nomenclature

cp

Specific heat coefficient, J/kg K

Cμ, C2ε, C1ε

The turbulence model constant

Dh

Hydraulic diameter, m

e

Total energy, J

E

Electric field strength, V/m

f

Friction factor

Fe

Electrohydrodynamic force, N/m3

g

Acceleration due to gravity, m/s2

\( \overline{h} \)

Convective heat transfer coefficient, W/m2K

h

Distance between wire electrode and grounded electrode, cm

H

Channel height, cm

k

Turbulence kinetic energy, J

K

Thermal conductivity, W/m K

L

Channel length, cm

\( \dot{m} \)

Mass flow rate

Nu

Nusselt number

P

Pressure, Pa

Prt

Turbulent Prandtl number

q

Wall heat flux, W/m2

r

Wire radius, cm

Re

Reynolds number

s

Corrugation length, cm

t

Time, s

T

Temperature, o C

ui

Velocity component, m/s

U

Mean velocity, m/s

UR

Uncertainty of result R

V

Voltage, V

Vi

Independent variables

Greek symbols

β

Ion mobility, m2/V s

δij

Kronecker delta

ε

Permittivity, F/m

ε

Turbulence dissipation rate, W

μ

Dynamic viscosity, kg/m s

ν

Kinematic viscosity, m2/s

ρ

Density, kg/m3

ρc

Space charge density, C/m3

σk

Prandtl number for kinetic energy

σε

Prandtl number for dissipation rate

Subscripts

Wire value

o

Indicate in absence EHD actuator

x

Local value in x direction

y

Local value in y direction

i, j

1,2 denote x-y space coordinate

s

Indicate smooth channel

eff

Net amount heat added to the air

t

Turbulent

w

Tall value

Ambient air

Superscripts

_

Average value

´

Fluctuating component

Notes

References

  1. 1.
    Molki M, Damronglerd P (2006) Electrohydrodynamic enhancement of heat transfer for developing air flow in square ducts. Heat Transfer Eng 27(1):35–45CrossRefGoogle Scholar
  2. 2.
    Owsenek B, Seyed-Yagoobi J (1997) Theoretical and experimental study of Electrohydrodynamic heat transfer enhancement through wire-plate corona discharge. J Heat Transf 119(3):604–610CrossRefGoogle Scholar
  3. 3.
    Kasayapanand N (2006) Numerical study of electrode bank enhanced heat transfer. Appl Therm Eng 26(14–15):1471–1480CrossRefGoogle Scholar
  4. 4.
    Ahmedou S, Havet M (2009) Effect of process parameters on the EHD airflow. J Electrost 67(2–3):222–227CrossRefGoogle Scholar
  5. 5.
    Kasayapanand N, Kiatsiriroat T (2005) EHD enhanced heat transfer in wavy channel. Int Commun Heat Mass Transfer 32:809–821CrossRefGoogle Scholar
  6. 6.
    Ohadi MM, Nelson DA, Zia S (1991) Heat-transfer enhancement of laminar and turbulent pipe-flow via corona discharge. Int J Heat Mass Transf 34(4–5):1175–1187CrossRefGoogle Scholar
  7. 7.
    Molki M, Ohadi MM, Baumgarten B, Hasegawa M, Yabe A (2000) Heat transfer enhancement of airflow in a channel using corona discharge. Journal of Enhanced Heat Transfer 7(6):411–425CrossRefGoogle Scholar
  8. 8.
    Tada Y, Takimoto A, Hayashi Y (1997) Heat transfer enhancement in a convective field by applying ionic wind. Journal of Enhanced Heat Transfer 4(2):71–86CrossRefGoogle Scholar
  9. 9.
    Molki M, Bhamidipati KL (2004) Enhancement of convective heat transfer in the developing region of circular tubes using corona wind. Int J Heat Mass Transf 47(19–20):4301–4314CrossRefGoogle Scholar
  10. 10.
    Mathew J, Lai FC (1995) Enhanced heat transfer in a horizontal channel with double electrodes. Conference Record of the 1995 IEEE Industry Applications Society 30th Annual Meeting. 2, p 1472–1479Google Scholar
  11. 11.
    Alamgholilou A, Esmaeilzadeh E (2012) Experimental investigation on hydrodynamics and heat transfer of fluid flow into channel for cooling of rectangular ribs by passive and EHD active enhancement methods. Exp Thermal Fluid Sci 38:61–73CrossRefGoogle Scholar
  12. 12.
    Shakouri Pour M, Esmaeilzadeh E (2011) Experimental investigation of convective heat transfer enhancement from 3D-shape heat sources by EHD actuator in duct flow. Exp Thermal Fluid Sci 35(7):1383–1391CrossRefGoogle Scholar
  13. 13.
    Lakeh RB, Molki M (2012) Targeted heat transfer augmentation in circular tubes using a corona jet. J Electrost 70(1):31–42CrossRefGoogle Scholar
  14. 14.
    Kasayapanand N (2008) Electrohydrodynamic enhancement of heat transfer in vertical fin array using computational fluid dynamics technique. Int Commun Heat Mass Transfer 35(6):762–770CrossRefGoogle Scholar
  15. 15.
    Deylami HM, Amanifard N, Dolati F, Kouhikamali R, Mostajiri K (2013) Numerical investigation of using various electrode arrangements for amplifying the EHD enhanced heat transfer in a smooth channel. J Electrost 71(4):656–665CrossRefGoogle Scholar
  16. 16.
    Deylami HM, Amanifard N, Dolati F, Kouhikamali R, Mostajiri K (2013) Investigation of EHD effects on the airflow through corrugated channels. J Mech Eng Sci 277:2730–2741CrossRefGoogle Scholar
  17. 17.
    Fluent Inc. (2006) FLUENT 6.3 user’s guide, Lebanon, NHGoogle Scholar
  18. 18.
    Adamiak K, Atten P (2004) Simulation of corona discharge in point–plane configuration. J Electrost 61(2):85–98CrossRefGoogle Scholar
  19. 19.
    Meroth AM, Gerber T, Munz CD, Levin PL, Schwab AJ (1999) Numerical solution of nonstationary charge coupled problems. J Electrost 45(3):177–198CrossRefGoogle Scholar
  20. 20.
    Holman JP (2011) Experimental methods for engineers, 8th edn. McGraw Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Technology and Engineering, East of GuilanUniversity of GuilanRudsarIran

Personalised recommendations