Heat and Mass Transfer

, Volume 55, Issue 12, pp 3561–3574 | Cite as

Investigation of heating characteristics of domestic gas cookers via a methodology of infrared thermography

  • Liang Zhong
  • Gaofeng WangEmail author
  • Yifan Xia
  • Guohan Cai
  • Shuai Liu
  • Ling Li
  • Yu Yu
  • Junmei Zheng


The heat flux measurement method based on the infrared thermography technique is first applied to study the heating characteristics of domestic gas cookers. Unlike the traditional means of heat flux measurement, the infrared thermography technique is non-intrusive and can help measure the heating flux distribution within two-dimensional space, which is very interesting to design and optimization aspects. The evolution of the temperature field of a heated pan is recorded to calculate the heating flux using the two-dimensional unsteady heat balance equations and inverse method. The heat radiation and natural convection can either be estimated or neglected in the calculation of the heating flux. Resistance foils with known electro-heating power are applied as the heating source to validate the feasibility and accuracy of this method. The uncertainty analyses show a maximum error of 15% in the local distribution and the error of 6% for the power. The heating flux distributions are measured for six gas cookers with different power modes. The results clearly reflect the mechanisms of the heat flux distributions linking to the designed structures of the burners. A dimensionless unevenness factor derived from the uniformity of heating flux distribution is defined for a better understanding of the locally overheating problems.



Heat flux (kW/m2)


Biot number (−)


Thickness (m)


Equivalent heat transfer coefficient of heating source (W/m2·K)


Heat transfer coefficient (W/m2·K)


Surface area (m2)


Temperature (K)


Equivalent temperature of the heating source (K)


Specific heat capacity (J/kg·K)


Radius (m)

Greek Symbols


Thermal conductivity (W/m·K)


Density (kg/m3)


Stefan-Boltzmann’s constant (W/(m2·K4))


Emissivity (−)


Differential operator


Unevenness factor (−)

Subscripts and Superscripts








Natural convection





The present work is financially supported by the Natural Science Foundation of China (No. 91541108 and 91841302) and the Fundamental Research Funds for the Central Universities (No. 2017FZA4032).


  1. 1.
    Makmool U et al (2011) Laser-based investigations of flow fields and OH distributions in impinging flames of domestic cooker-top burners. Fuel 90(3):1024–1035CrossRefGoogle Scholar
  2. 2.
    Jugjai S, Tia S, Trewetasksorn W (2001) Thermal efficiency improvement of an LPG gas cooker by a swirling central flame. Int J Energy Res 25(8):657–674CrossRefGoogle Scholar
  3. 3.
    Joshi JB et al (2012) Development of efficient designs of cooking systems. I Experiment Industr Eng Chem Res 51(4):1878–1896CrossRefGoogle Scholar
  4. 4.
    Grima-Olmedo C, Ramírez-Gómez Á, Alcalde-Cartagena R (2014) Energetic performance of landfill and digester biogas in a domestic cooker. Appl Energy 134:301–308CrossRefGoogle Scholar
  5. 5.
    Bozzoli F et al (2018) Turbulent flow regime in coiled tubes: local heat-transfer coefficient. Heat Mass Transf 54(8):2371–2381CrossRefGoogle Scholar
  6. 6.
    Katti VV, Yasaswy SN, Prabhu SV (2011) Local heat transfer distribution between smooth flat surface and impinging air jet from a circular nozzle at low Reynolds numbers. Heat Mass Transf 47(3):237–244CrossRefGoogle Scholar
  7. 7.
    Willeke K, Bershader D (1973) An improved thin-film gauge for shock-tube thermal studies. Rev Sci Instrum 44(1):22–25CrossRefGoogle Scholar
  8. 8.
    Baines DJ (1972) Selecting unsteady heat-flux sensors. Instrum Contrl Syst 45(5):80Google Scholar
  9. 9.
    Baughn JW, Shimizu S (1989) Heat transfer measurements from a surface with uniform heat flux and an impinging jet. J Heat Transf-Trans Asme 111(1–4):1096–1098CrossRefGoogle Scholar
  10. 10.
    Carlomagno GM, Cardone G (2010) Infrared thermography for convective heat transfer measurements. Exp Fluids 49(6):1187–1218CrossRefGoogle Scholar
  11. 11.
    Gradeck M et al (2012) Solution of an inverse problem in the Hankel space - infrared thermography applied to estimation of a transient cooling flux. Exp Thermal Fluid Sci 36:56–64CrossRefGoogle Scholar
  12. 12.
    Lu Y, Allison D, Ekkad SV (2007) Turbine blade showerhead film cooling: influence of hole angle and shaping. Int J Heat Fluid Flow 28(5):922–931CrossRefGoogle Scholar
  13. 13.
    Seraudie A, Perraud J, Moens F (2003) Transition measurement and analysis on a swept wing in high lift configuration. Aerosp Sci Technol 7(8):569–576CrossRefGoogle Scholar
  14. 14.
    Zuccher S, Saric WS (2008) Infrared thermography investigations in transitional supersonic boundary layers. Exp Fluids 44(1):145–157CrossRefGoogle Scholar
  15. 15.
    Brutin D et al (2011) Infrared visualization of thermal motion inside a sessile drop deposited onto a heated surface. Exp Thermal Fluid Sci 35(3):521–530CrossRefGoogle Scholar
  16. 16.
    Lyons OFP, Murray DB, Torrance AA (2008) Air jet cooling of brake discs. Proc Instit Mech Eng Part C-J Mech Eng Sci 222(6):995–1004CrossRefGoogle Scholar
  17. 17.
    Roger M (2007) A periodic-transient method for high-resolution heat transfer measurement on two dimensional curved surfaces. J Heat Transf -Trans ASME 129(12):1638–1654CrossRefGoogle Scholar
  18. 18.
    Azevedo LFA, Webb BW, Queiroz M (1994) Pulsed air-jet impingement heat-transfer. Exp Thermal Fluid Sci 8(3):206–213CrossRefGoogle Scholar
  19. 19.
    Rahal S, Cerisier P, Azuma H (2007) Benard-Marangoni convection in a small circular container: influence of the biot and Prandtl numbers on pattern dynamics and free surface deformation. Exp Fluids 43(4):547–554CrossRefGoogle Scholar
  20. 20.
    Jalilvand A et al (2008) The study and development of roll heat pipe performance. Heat Transf Eng 29(12):977–983CrossRefGoogle Scholar
  21. 21.
    Cheng W-L et al (2010) Experimental investigation of parameters effect on heat transfer of spray cooling. Heat Mass Transf 46(8):911–921CrossRefGoogle Scholar
  22. 22.
    Schulein E (2006) Skin-friction and heat flux measurements in shock/boundary-layer interaction flows. AIAA J 44(8):1732–1741CrossRefGoogle Scholar
  23. 23.
    Bougeard D (2007) Infrared thermography investigation of local heat transfer in a plate fin and two-tube rows assembly. Int J Heat Fluid Flow 28(5):988–1002CrossRefGoogle Scholar
  24. 24.
    Fenot M, Dorignac E, Vullierme JJ (2008) An experimental study on hot round jets impinging a concave surface. Int J Heat Fluid Flow 29(4):945–956CrossRefGoogle Scholar
  25. 25.
    Astarita T, Cardone G (2000) Thermofluidynamic analysis of the flow in a sharp 180 degrees turn channel. Exp Thermal Fluid Sci 20(3–4):188–200CrossRefGoogle Scholar
  26. 26.
    Ricci R, Montelpare S (2005) A quantitative IR thermographic method to study the laminar separation bubble phenomenon. Int J Therm Sci 44(8):709–719CrossRefGoogle Scholar
  27. 27.
    Astarita T, Cardone G, Carlomagno GM (2006) Infrared thermography: an optical method in heat transfer and fluid flow visualisation. Opt Lasers Eng 44(3–4):261–281CrossRefGoogle Scholar
  28. 28.
    Dhungel A et al (2007) Film cooling from a row of holes supplemented with anti vortex holes. Proc ASME Turbo Expo 2007 4:375–384CrossRefGoogle Scholar
  29. 29.
    Hetsroni G et al (2003) Heat transfer to two-phase flow in inclined tubes. Int J Multiphase Flow 29(2):173–194CrossRefGoogle Scholar
  30. 30.
    Gulhan A, Schutte G, Stahl B (2008) Experimental study on aerothermal heating caused by jet-hypersonic crossflow interaction. J Spacecr Rocket 45(5):891–899CrossRefGoogle Scholar
  31. 31.
    Chander S, Ray A (2006) Influence of burner geometry on heat transfer characteristics of methane/air flame impinging on flat surface. Experiment Heat Transf 19(1):15–38CrossRefGoogle Scholar
  32. 32.
    Chander S, Ray A (2007) Heat transfer characteristics of three interacting methane/air flame jets impinging on a flat surface. Int J Heat Mass Transf 50(3):640–653CrossRefGoogle Scholar
  33. 33.
    Hindasageri V, Vedula RP, Prabhu SV (2014) Heat transfer distribution for impinging methane–air premixed flame jets. Appl Therm Eng 73(1):461–473CrossRefGoogle Scholar
  34. 34.
    Hindasageri V, Vedula RP, Prabhu SV (2015) Heat transfer distribution for three interacting methane–air premixed impinging flame jets. Int J Heat Mass Transf 88:914–925CrossRefGoogle Scholar
  35. 35.
    Kuntikana P, Prabhu SV (2018) Impinging premixed methane-air flame jet of tube burner: thermal performance analysis for varied equivalence ratios. Heat Mass TransfGoogle Scholar
  36. 36.
    User's Manual FLIR (2016) Exx series, FLIR, editorGoogle Scholar
  37. 37.
    Wen C-D, Chai T-Y (2011) Examination of multispectral radiation thermometry using linear and log-linear emissivity models for aluminum alloys. Heat Mass Transf 47(7):847–856CrossRefGoogle Scholar
  38. 38.
    Incropera FP (2006) Fundamentals of heat and mass transfer. : John Wiley & SonsGoogle Scholar
  39. 39.
    Chase MW (1996) NIST-JANAF thermochemical tables for the oxygen fluorides. J Phys Chem Ref Data 25(2):551–603CrossRefGoogle Scholar
  40. 40.
    Meda A, Katti VV (2017) Local distribution of wall static pressure and heat transfer on a rough flat plate impinged by a slot air jet. Heat Mass Transf 53(8):2497–2515CrossRefGoogle Scholar
  41. 41.
    Attalla M, Salem M (2014) Heat transfer from a flat surface to an inclined impinging jet. Heat Mass Transf 50(7):915–922CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsZhejiang UniversityHangzhouChina
  2. 2.Zhejiang Key Laboratory of Health Intelligence Kitchen System IntegrationNingboChina

Personalised recommendations