Heat and Mass Transfer

, Volume 55, Issue 12, pp 3589–3602 | Cite as

Physico-chemical, thermal, thermodynamic and kinetic characterization of a porous material (Di-calcium phosphate)

  • Sana JmaiEmail author
  • Mohamed Bagane
  • Michèle Queneudec-T’kint


The sorption isotherms of di-calcium phosphate (DCP) were determined using the gravimetric method at four temperatures. The sorption curves were fitted by the Guggenheim-Anderson-deBoer (GAB) model. The dehydration process was studied by means of X-ray diffraction. Thermo-gravimetric /differential thermal analyses (TGA / DTA) were used to record the loss of water and the nature of the products was studied by Fourier Transform Infrared Spectroscopy. The morphology of DCP was tested using the electronic scanning morphology (SEM). The thermal conductivity was determined using Hot Disk method. DCP convective drying kinetics modeling was conducted by the experimental study of the aero-thermal condition effects. The drying characteristic curves were then modeled using the nonlinear regression functions of MATLABR2013a. The curves predicted by the GAB model coincide well with the majority of the experimental points of the sorption isotherms. The net isosteric heat is mathematically expressed by second-order exponential function of the water content. SEM shows the presence of anhydrate and di-hydrate forms of DCP. DCP loses molecules of water when heated in two stages. Hot Disk method shows that the thermal conductivity depends heavily on the drying temperature and the product moisture. Midilli-kucuk is considered the most suitable model for the experimental results.


Di-calcium phosphate Porous material characterization Thermal conductivity Sorption water equilibrium Kinetic Heat and mass transfer 


Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Landin M, Rowe RC, York P (1994) Structural changes during the dehydration of Di calcium phosphate digydrate. Eur J Pharm Sci 2:245–252CrossRefGoogle Scholar
  2. 2.
    Jones DW, Smith JAS (1962) The structure of brushite, CaHP04,2H20. J Chem Soc 1414–1420Google Scholar
  3. 3.
    Bohner M, Gbureck U (2008) Thermal reactions of brushite cements. J Biomed Mater Res B ApplBiomater 84(2):375-85CrossRefGoogle Scholar
  4. 4.
    Sainz-Díaz CI, Villacampa A, Otálora F (2004) Crystallographic properties of the calcium phosphate mineral, brushite, by means of first principles calculations. Am Mineral 89(2–3):307–313CrossRefGoogle Scholar
  5. 5.
    Jannot Y (2008) Isothermes de Sorption: Modèles et Détermination :Activité de l’eau Formes et modèlesdes isothermes de sorption, p 1–16Google Scholar
  6. 6.
    Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand 81A(1):89CrossRefGoogle Scholar
  7. 7.
    Kechaou N, Maalej M (2007) Desorption isotherms of imported banana application of the GAB theory. Dry Technol 2014:37–41Google Scholar
  8. 8.
    Lewis W (1921) The rate of drying of solid materials. Ind Eng Chem 13:427–432CrossRefGoogle Scholar
  9. 9.
    Abdenouri N, Idlimam A, Kouhila M (2010) Sorption isotherms and thermodynamic properties of powdered milk. Chem Eng Commun 197(8):1109–1125CrossRefGoogle Scholar
  10. 10.
    Tsami E, Maroulis ZB, Marinos-Kouris, Saravacos GD (1990) Heat of sorption of water in dried fruits. Int J Food Sci Technol 25(3):350–359CrossRefGoogle Scholar
  11. 11.
    Everett DH (1950) The thermodynamics of adsorption of monolayers on solids. Trans Faraday Soc vol 2294(1884):1925–1926Google Scholar
  12. 12.
    Page G (1949) Factors influencing the maximum rate of air drying shelled corn in thin-layers. Purdue Univ., West LafayetteGoogle Scholar
  13. 13.
    Overhults D, White G, Hamilton HE, Ross IJ (1973) Drying soybeans with heated air. Trans ASAE 16(1):0112–0113CrossRefGoogle Scholar
  14. 14.
    Henderson S (1974) Progress in developing the thin layer drying equation. Trans Am Soc Agric Eng 17:1167–1168CrossRefGoogle Scholar
  15. 15.
    Wang GY, Singh RP (1978) A single layer drying equation for rough rice. American Society of Agricultural Engineers 1–17Google Scholar
  16. 16.
    Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY (1980) A model for ear corn drying. Trans Am Soc Agric Eng 23:1261–1265CrossRefGoogle Scholar
  17. 17.
    Verma LR, Bucklin R, Endan J, Wratten F (1985) Effects of drying air parameters on rice drying models. Trans Am Soc Agric Eng 28:296–301CrossRefGoogle Scholar
  18. 18.
    Henderson SM, Pabis S (1962) Grain drying theory: IV the effect of airflow rate on drying index. J Agric Eng Res 7:85–89Google Scholar
  19. 19.
    Karathanos VT (1999) Determination of water content of dried fruits by drying kinetics. J Food Eng 39:337–344CrossRefGoogle Scholar
  20. 20.
    Chandra PK, Singh RP (1994) Applied numerical methods for food and agricultural engineers. CRC Press, Boca Raton, p 512Google Scholar
  21. 21.
    Yaldiz O, Ertekin C, Uzun H (2001) Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26:457–465CrossRefGoogle Scholar
  22. 22.
    Midilli A, Kucuk H, Yapar Z (2002) A new model for single-layer drying. Dry Technol 20:1503–1513CrossRefGoogle Scholar
  23. 23.
    Darvishi H, Azadbakht M, Rezaeiasl A, Farhang A (2013) Drying characteristics of sardine fish dried with microwave heating. J Saudi Soc Agric Sci 12(2):121–127Google Scholar
  24. 24.
    Bensekrane B, Harrache D, Gallart-Mateu D, de La Guardia M (2014) Effets des extraits de noyaux de dattes Phoenix dactyliferaL .sur la cristallisation de la brushitedans l ’ urine totale, Lavoisier SAS, p 1–12Google Scholar
  25. 25.
    Banu M (2005) Mise en forme d’apatitesnanocristallines: céramiquesetciments céramiques et ciments thesis at the Institut National Polytechnique de ToulouseGoogle Scholar
  26. 26.
    Maity JP et al (2011) Synthesis of brushite particles in reverse microemulsions of the biosurfactant surfactin, p 3821–3830Google Scholar
  27. 27.
    MIiyazaki T, Sivaprakasam K, Tantry J, Suryanarayanan R (2009) Physical characterization of dibasic calcium phosphate dihydrate and anhydrate. J Pharm Sci 98(3):905–916CrossRefGoogle Scholar
  28. 28.
    Trpkovska M, Šoptrajanov B, Malkov P (1999) FTIR reinvestigation of the spectra of synthetic brushite and its partially deuterated analogues. J Mol Struct 480–481:661–666CrossRefGoogle Scholar
  29. 29.
    Tortet L, Gavarri JR, Nihoul G, Dianoux AJ (1997) Study of protonic mobility in CaHPO4·2H2O (brushite) and CaHPO4 (monetite) by infrared spectroscopy and neutron scattering. J Solid State Chem 132(1):6–16CrossRefGoogle Scholar
  30. 30.
    Schofield PF, Knight KS, van der Houwen JAM, Valsami-Jones E (2004) The role of hydrogen bonding in the thermal expansion and dehydration of brushite, di-calcium phosphate dihydrate. Phys Chem Miner 31(9):606–624CrossRefGoogle Scholar
  31. 31.
    Dosen A, Giese RF (2011) Thermal decomposition of brushite, CaHPO4.2H2O to monetite CaHPO4 and the formation of an amorphous phase. Am Mineral 96(2–3):368–373CrossRefGoogle Scholar
  32. 32.
    Rousseau S, Bühler M, Lemaître J (2002) Thermometric study of brushite cements. Eur Cells Mater 3(SUPPL. 1):34–35Google Scholar
  33. 33.
    Klammert U (2010) 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. J Cranio-Maxillofac Surg 3:565–570CrossRefGoogle Scholar
  34. 34.
    Thony J-L (2012) Etude expérimentale des phénomènesd ‘hystérésisdans les éléments en milieuxporeux non saturésGoogle Scholar
  35. 35.
    Arogba SS (2001) Effect of temperature on the moisture sorption isotherm of a biscuit containing processed mango (Mangiferaindica ) kernel ¯ flour. J Food Eng 48:121–125CrossRefGoogle Scholar
  36. 36.
    Crausse P, Laurent J-P, Perrin B (1996) Influence des phénomènes d hystérésissur les propriétéshydriques de matériauxporeux. Rev Gen Therm 35(410):95–106CrossRefGoogle Scholar
  37. 37.
    Tsami E (1991) Net isosteric heat of sorption in dried fruits. J Food Eng 14(4):327–335CrossRefGoogle Scholar
  38. 38.
    Iglesias J, Chirife HA (1976) Isosteric heats of water vapor sorption on dehydrated foods. Part II: Hysteresis and heat of sorption comparison with BET theory J Fd Tahd 11:91-101.Google Scholar
  39. 39.
    Madamba P, Driscoll R, Buckle K (1996) The thin-layer drying characteristics of garlic slices. J Food Eng 29:75–97CrossRefGoogle Scholar
  40. 40.
    Kaya A, Aydın O (2009) An experimental study on drying kinetics of some herbal leaves. Energy Convers Manag 50(1):118–124CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Applied Thermodynamic Laboratory, National School of Engineers of Gabes TunisiaUniversity of GabesGabesTunisia
  2. 2.EPROAD IMaP Research Unit Materials and Processes EngineeringAmiensFrance

Personalised recommendations