Heat and Mass Transfer

, Volume 55, Issue 8, pp 2329–2339 | Cite as

Experimental investigation of thermal conductivity behavior of MWCNTS-Al2O3/ethylene glycol hybrid Nanofluid: providing new thermal conductivity correlation

  • Ali Akbar Abbasian AraniEmail author
  • Farhad Pourmoghadam


The present study investigates the thermal conductivity of Al2O3 hybrid with MWCNTs (multi-walled carbon nanotubes) nanoparticles dispersed in ethylene glycol (EG) as a base fluid. Seven different nanoparticles volume fractions, namely, 0.02%, 0.04%, 0.08%, 0.1%, 0.25%, 0.5% and 0.8% at temperatures ranging from 25 °C to 50 °C of the hybrid nanofluid are prepared without using any surfactant. Transient Hot Wire method (THM) using KD2 Pro device (Decagon Devices, Inc., USA) was used to measure the thermal conductivity of the nanofluids. The results show at most about 17% thermal conductivity enhancement for 0.8% nanoparticles volume fraction at 50 °C. Two new correlations are proposed to estimate the hybrid nanofluid thermal conductivity with high accuracy. The first one is a function of the nanofluid temperature and its volume fraction and the next one, with a higher accuracy, is in effect six expressions in terms of the nanoparticles volume fraction presented at temperatures 25 °C, 30 °C, 35 °C, 40 °C, 45 °C and 50 °C.



  1. 1.
    Hemmat Esfe M, Abbasian Arani AA, Firouzi M (2017) Empirical study and model development of thermal conductivity improvement and assessment of cost and sensitivity of EG-water based SWCNT-ZnO (30%: 70%) hybrid nanofluid. J Mol Liq 244(1):252–261CrossRefGoogle Scholar
  2. 2.
    Abbaszadeh M, Ababaei A, Abbasian Arani AA, Abbasi Sharifabadi A (2017) MHD forced convection and entropy generation of CuO-water nanofluid in a microchannel considering slip velocity and temperature jump. J Braz Soc Mech Sci Eng 39(3):775–790CrossRefGoogle Scholar
  3. 3.
    Abbasian Arani AA, Kakoli E, Hajialigol N (2014) Double-diffusive natural convection of Al2O3-water nanofluid in an enclosure with partially active side walls using variable properties. J Mech Sci Technol 28(11):4681–4691CrossRefGoogle Scholar
  4. 4.
    Dastmalchi D, Sheikhzadeh GA, Abbasian Arani AA (2015) Double-diffusive natural convective in a porous square enclosure filled with nanofluid. Int J Therm Sci 95:88–98CrossRefGoogle Scholar
  5. 5.
    Abbasian Arani AA, Mahmoodi M, Mazrouei Sebdani S (2014) On the Cooling Process of Nanofluid in a Square Enclosure with Linear Temperature Distribution on Left Wall. J Appl Fluid Mech 7(4):591–601Google Scholar
  6. 6.
    Abbasian Arani AA, Amani J, Hemmat Esfe M (2012) Numerical simulation of mixed convection flows in a square double lid-driven cavity partially heated using nanofluid. J NANOSTRUCTURES 2(3):301–311Google Scholar
  7. 7.
    Hemmat Esfe M, Abbasian Arani AA, Niroumand AH, Yan WM, Karimipour A (2015) Mixed convection heat transfer from surface-mounted block heat sources in a horizontal channel with nanofluids. Int J Heat Mass Transf 89:783–791CrossRefGoogle Scholar
  8. 8.
    Cherkasova AS, Shan JW (2008) Particle aspect-ratio effects on the thermal conductivity of micro- and nanoparticle suspensions. J Heat Transf 130:082406–082407CrossRefGoogle Scholar
  9. 9.
    Agarwal R, Verma K, Kumar Agrawal N, Singh R (2017) Sensitivity of thermal conductivity for Al2O3 nanofluids. Exp Thermal Fluid Sci 80:19–26CrossRefGoogle Scholar
  10. 10.
    Chiam HW, Azmi WH, Usri NA, Mamat R, Adam NM (2017) Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp Thermal Fluid Sci 81:420–429CrossRefGoogle Scholar
  11. 11.
    Eshgarf H, Afrand M (2016) An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Exp Thermal Fluid Sci 76:221–227CrossRefGoogle Scholar
  12. 12.
    Iwamoto Y, Yoshioka A, Naito T, Cuya J, Ido Y, Ryo O, Jeyadevan B, Yamaguchi H (2016) Field induced anisotropic thermal conductivity of silver nanowire dispersed-magnetic functional fluid. Exp Thermal Fluid Sci 79:111–117CrossRefGoogle Scholar
  13. 13.
    Nurdin I, Idris Yaacob I, Rafie Johan M (2016) Enhancement of thermal conductivity and kinematic viscosity in magnetically controllable maghemite (γ-Fe2O3) nanofluids. Exp Thermal Fluid Sci 77:265–271CrossRefGoogle Scholar
  14. 14.
    Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. Dev Appl Non Newton Flows 231:99–105Google Scholar
  15. 15.
    Ozerinc S, Kakac S, Yazicioglu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid 8:145–170CrossRefGoogle Scholar
  16. 16.
    Zyła G, Fal J (2016) Experimental studies on viscosity, thermal and electrical conductivityof aluminum nitride–ethylene glycol (AlN–EG) nanofluids. Thermochim Acta 637:11–16CrossRefGoogle Scholar
  17. 17.
    Sundar LS, Singh MK, Sousa ACM (2013) Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transfer 44:7–14CrossRefGoogle Scholar
  18. 18.
    Hemmat Esfe M, Saedodin S, Yan WM, Afrand M, Sina N (2016) Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/Al2O3 nano- particles. J Therm Anal Calorim 124:455–460CrossRefGoogle Scholar
  19. 19.
    Moghadassi A, Ghomi E, Parvizian F (2015) A numerical study of water based Al2O3 and Al2O3eCu hybrid nanofluid effect on forced convective heat transfer. Int J Therm Sci 92:50–57CrossRefGoogle Scholar
  20. 20.
    Phuoc TX, Massoudi M, Chen RH (2011) Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int J Therm Sci 50:12–18CrossRefGoogle Scholar
  21. 21.
    Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121(2):121–289CrossRefGoogle Scholar
  22. 22.
    Syam Sundar L, Hashim Farooky M, Naga Sarada S, Singh MK (2013) Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids. Int Commun Heat Mass Transfer 41:41–46CrossRefGoogle Scholar
  23. 23.
    Kumaresan V, Velraj R (2012) Experimental investigation of the thermo-physical properties of water–ethylene glycol mixture based CNT nanofluids. Thermochim Acta 545:180–186CrossRefGoogle Scholar
  24. 24.
    Hemmat Esfe M, Karimipour A, Yan WM, Akbari M, Safaei M, Dahari M (2015) Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int J Heat Mass Transf 88:728–734CrossRefGoogle Scholar
  25. 25.
    Xie H, Lee H, Youn W, Choi M (2003) Nanofluids containing multi walled carbon nanotubes and their enhanced thermal conductivities. J Appl Physiol 94:4967–4971CrossRefGoogle Scholar
  26. 26.
    Wen D, Ding Y (2004) Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Thermophysics Heat Transfer 18:481–485CrossRefGoogle Scholar
  27. 27.
    Sadri R, Ahmadi G, Togun H, Dahari M, Kazi SN, Sadeghinezhad E, Zubir N (2014) An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res Lett 9:151–166CrossRefGoogle Scholar
  28. 28.
    Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K (2009) An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int Heat Mass Transfer 52:5090–5101CrossRefGoogle Scholar
  29. 29.
    Assael MJ, Chen CF, Metaxa I, Wakeham WA (2004) Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys 25(4):971–985CrossRefGoogle Scholar
  30. 30.
    Afrand M (2017) Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng 110:1111–1119CrossRefGoogle Scholar
  31. 31.
    Harandi SS, Karimipour A, Afrand M, Akbari M, D'Orazio A (2016) An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: Effects of temperature and concentration. Int Commun Heat Mass Transfer 76:171–177CrossRefGoogle Scholar
  32. 32.
    Teng TP, Hung YH, Teng TC, Hsu HS (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30:2213–2218CrossRefGoogle Scholar
  33. 33.
    Toghraie D, Chaharsoghi VA, Afrand M (2016) Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Analysis Calorimetry 125:527–535CrossRefGoogle Scholar
  34. 34.
    Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2—water based nanofluids. Int J Therm Sci 44:367–373CrossRefGoogle Scholar
  35. 35.
    Abbasian Arani AA, Aberoumand H, Aberoumand S, Jafari Moghaddam A, Dastanian M (2016) An empirical investigation on thermal characteristics and pressure drop of Ag-oil nanofluid in concentric annular tube. Heat Mass Transf 52(8):1693–1706CrossRefGoogle Scholar
  36. 36.
    Hemmat Esfe M, Mohseni Behbahani P, Abbasian Arani AA, Sarlak MR (2016) Thermal conductivity enhancement of SiO2–MWCNT (85: 15%)–EG hybrid nanofluids. J Therm Anal Calorim 128(1):249–258CrossRefGoogle Scholar
  37. 37.
    Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Angue Mintsa H (2007) Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon. Int J Heat Fluid Flow 28(6):1492–1506CrossRefGoogle Scholar
  38. 38.
    Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, Angue Mintsa H (2008) Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable. Int J Therm Sci 47:103–111CrossRefGoogle Scholar
  39. 39.
    Nguyen CT, Nicolas G, Thierry M, Erwan E (2010) New Viscosity Data for CuO-water Nanouid -The Hysteresis Phenomenon Revisited. Adv Sci Tech 81:101–106CrossRefGoogle Scholar
  40. 40.
    Aladag B, Halelfadl S, Doner N, Maré T, Duret S, Estellé P (2012) Experimental investigations of the viscosity of nanofluids at low temperatures. Appl Energy 97:876–880CrossRefGoogle Scholar
  41. 41.
    Said Z, Sajid MH, Alim MA, Saidur R, Rahim NA (2013) Experimental investigation of the thermophysical properties of Al2O3–nanofluid and its effect on a flat plate solar collector. Int Commun Heat Mass Transfer 48:99–107CrossRefGoogle Scholar
  42. 42.
    Said Z, Saidur R, Hepbasli A, Rahim NA (2014) New thermophysical properties of water based TiO2 nanofluid—Thhysteresis phenomenon revisited. Int Commun Heat Mass Transfer 58:85–95CrossRefGoogle Scholar
  43. 43.
    Hemmat Esfe M, Razi P, Hajmohammad MH, Rostamian SH, Sarsam WS, Abbasian Arani AA, Dahari M (2017) Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids by NSGA-II using ANN. Int Commun Heat Mass Transfer 82:154–160CrossRefGoogle Scholar
  44. 44.
    Hemmat Esfe M, Hajmohammad H, Moradi R, Abbasian Arani AA (2017) Multi-objective optimization of cost and thermal performance of double walled carbon nanotubes/water nanofluids by NSGA-II using response surface method. Appl Therm Eng 112:1648–1657CrossRefGoogle Scholar
  45. 45.
    Tahani M, Vakili M, Khosrojerdi S (2016) Experimental evaluation and ANN modeling of thermal conductivity of graphene oxide nanoplatelets/deionized water nanofluid. Int Commun Heat Mass Transfer 76:358–365CrossRefGoogle Scholar
  46. 46.
    Heidari E, Sobati MA, Movahedirad S (2016) Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN). Chemometrics Intelligent Laboratory Sys 155:73–85CrossRefGoogle Scholar
  47. 47.
    Giovanni AL, Claudio ZL, Ortombina MZ (2017) Application of Artificial Neural Network (ANN) for modeling oxide-based nanofluids dynamic viscosity. Int Commun Heat Mass Transfer 83:8–14CrossRefGoogle Scholar
  48. 48.
    Amani M, Amani P, Mahian O, Estellé P (2017) Multi-objective optimization of thermophysical properties of eco-friendly organic nanofluids. J Clean Prod 166:350–359CrossRefGoogle Scholar
  49. 49.
    Afrand M, Toghraie D, Ruhani B (2016) Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: An experimental study. Exp Thermal Fluid Sci 77:38–44CrossRefGoogle Scholar
  50. 50.
    Aghabozorg MH, Rashidi A, Mohammadi S (2016) Experimental investigation of heat transfer enhancement of Fe2O3-CNT/water magnetic nanofluids under laminar, transient and turbulent flow inside a horizontal shell and tube heat exchanger. Exp Thermal Fluid Sci 72:182–189CrossRefGoogle Scholar
  51. 51.
    Allahyar HR, Hormozi F, ZareNezhad B (2016) Experimental investigation on the thermal performance of a coiled heat exchanger using a new hybrid nanofluid. Exp Thermal Fluid Sci 76:324–329CrossRefGoogle Scholar
  52. 52.
    Hemmat Esfe M, Afrand M, Rostamian SH, Toghraie D (2017) Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Thermal Fluid Sci 80:384–390CrossRefGoogle Scholar
  53. 53.
    Hung YH, Wang WP, Hsu YC, Teng TP (2017) Performance evaluation of an air-cooled heat exchange system for hybrid nanofluids. Exp Thermal Fluid Sci 81:43–55CrossRefGoogle Scholar
  54. 54.
    Mohammed Hussein A (2017) Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger. Exp Thermal Fluid Sci 88:37–45CrossRefGoogle Scholar
  55. 55.
    Liu H, Xia X, Ai Q, Xie X, Sun C (2017) Experimental investigations on temperature-dependent effective thermal conductivity of nanoporous silica aerogel composite. Exp Thermal Fluid Sci 84:67–77CrossRefGoogle Scholar
  56. 56.
    Madhesh D, Parameshwaran R, Kalaiselvam S (2014) Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Exp Thermal Fluid Sci 52:104–115CrossRefGoogle Scholar
  57. 57.
    Menbari A, Alemrajabi AA, Ghayeb Y (2016) Investigation on the stability, viscosity and extinction coefficient of CuO–Al2O3/Water binary mixture nanofluid. Exp Thermal Fluid Sci 74:122–129CrossRefGoogle Scholar
  58. 58.
    Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M (2012) Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp Thermal Fluid Sci 38:54–60CrossRefGoogle Scholar
  59. 59.
    Hemmat Esfe M, Rejvani M, Karimpour R, Abbasian Arani AA (2017) Estimation of thermal conductivity of ethylene glycol-based nanofluid with hybrid suspensions of SWCNT–Al2O3 nanoparticles by correlation and ANN methods using experimental data. J Therm Anal Calorim 128(3):1359–1371CrossRefGoogle Scholar
  60. 60.
    ISO, 14887 (2000) (E): Sample preparation dispersing procedures for powders in liquids. International Organization for Standardization, GenevaGoogle Scholar
  61. 61.
    Lee J-H, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SU et al (2008) Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf 51(11):2651–2656CrossRefGoogle Scholar
  62. 62.
    Philippe L, Christophe T, Mohamed B (2011) Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles. J Colloid Interface Sci 356:442–453CrossRefGoogle Scholar
  63. 63.
    Li Y-H, Qu W, Feng J-C (2008) Temperature Dependence of Thermal Conductivity of Nanofluids. Chin Phys Lett 25(9):3319CrossRefGoogle Scholar
  64. 64.
    Patel HE, Das SK, Sundararajan TA, Nair S, George B, Pradeep T (2003) Thermal conductivity of naked and monolayer protected metal nanoparticles based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83:2931CrossRefGoogle Scholar
  65. 65.
    Naik MT, Janardhana GR (2010) Temperature dependent thermal conductivity enhancement of copper oxide nanoparticles dispersed in propylene glycol-water base fluid. Int J Nanoparticles 3(2):149–159CrossRefGoogle Scholar
  66. 66.
    Batmunkh M, Tanshen MR, Nine MJ, Myekhlai M, Choi H, Chung H, Jeong H (2014) Thermal Conductivity of TiO2 Nanoparticles Based Aqueous Nanofluids with an Addition of a Modified Silver Particle, Industrial & Engineering Chemistry Research. Ind Eng Chem Res 53(20):8445–8451CrossRefGoogle Scholar
  67. 67.
    Jang SP, Choi SUS (2004) Role of Brownian-Motion in the Enhanced Thermal Conductivity of Nanofluids Appl. Phys Lett 84:4316Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of KashanKashanIran
  2. 2.Department of Mechanical Engineering, Borujerd BranchIslamic Azad UniversityBorujerdIran

Personalised recommendations