Advertisement

Heat and Mass Transfer

, Volume 55, Issue 1, pp 105–117 | Cite as

Effects of nanoparticles deposition on thermal behaviour of boiling nanofluids

  • Hooman Azimi
  • Zahra BaniamerianEmail author
Original
  • 36 Downloads

Abstract

Recently, nanofluids are employed as the new generation of coolants specifically in boiling-mode cooling systems. In the present study, the convection heat transfer of boiling nanofluids through micro/minichannels is analytically investigated. Effects of nanoparticles deposition on heat transfer and fluid flow behavior of boiling nanofluids are comprehensively discussed. Nanoparticles deposition during flow boiling is found to cause different effects due to corresponding thermal conductivities. The proposed model validation was found to be in a good accordance with the results of previous studies.

Notes

References

  1. 1.
    Fang X, Zhou Z, Li D (2013) Review of correlations of flow boiling heat transfer coefficients for carbon dioxide. Int J Refrig 36(8):2017–2039CrossRefGoogle Scholar
  2. 2.
    Zhang H, Mudawar I, Hasan MM (2009) Application of flow boiling for thermal management of electronics in microgravity and reduced-gravity space systems. IEEE Trans Compon Packag Technol 32(2):466–477CrossRefGoogle Scholar
  3. 3.
    Peng H, Ding G, Jiang W, Hu H, Gao Y (2009) Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. Int J Refrig 32(6):1259–1270CrossRefGoogle Scholar
  4. 4.
    Lee S-W, Park S-D, Kang S-R, Kim S-M, Seo H, Lee D-W, Bang I-C (2012) Critical heat flux enhancement in flow boiling of Al 2 O 3 and SiC nanofluids under low pressure and low flow conditions. Nucl Eng Technol 44(4):429–436CrossRefGoogle Scholar
  5. 5.
    Chehade AA, Gualous HL, Le Masson S, Fardoun F, Besq A (2013) Boiling local heat transfer enhancement in minichannels using nanofluids. Nanoscale Res Lett 8(1):130CrossRefGoogle Scholar
  6. 6.
    Henderson K, Park Y-G, Liu L, Jacobi AM (2010) Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube. Int J Heat Mass Transf 53(5):944–951CrossRefGoogle Scholar
  7. 7.
    Baqeri S, Akhavan-Behabadi M, Ghadimi B (2014) Experimental investigation of the forced convective boiling heat transfer of R-600a/oil/nanoparticle. Int Commun Heat Mass Transfer 55:71–76CrossRefGoogle Scholar
  8. 8.
    Sarafraz M, Hormozi F (2014) Scale formation and subcooled flow boiling heat transfer of CuO–water nanofluid inside the vertical annulus. Exp Thermal Fluid Sci 52:205–214CrossRefGoogle Scholar
  9. 9.
    Kim SJ, McKrell T, Buongiorno J, Hu L-w (2010) Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure. Nucl Eng Des 240(5):1186–1194CrossRefGoogle Scholar
  10. 10.
    Rana K, Rajvanshi A, Agrawal G (2013) A visualization study of flow boiling heat transfer with nanofluids. J Vis 16(2):133–143CrossRefGoogle Scholar
  11. 11.
    Vafaei S, Wen D (2011) Flow boiling heat transfer of alumina nanofluids in single microchannels and the roles of nanoparticles. J Nanopart Res 13(3):1063–1073CrossRefGoogle Scholar
  12. 12.
    Kim TI, Jeong YH, Chang SH (2010) An experimental study on CHF enhancement in flow boiling using Al 2 O 3 nano-fluid. Int J Heat Mass Transf 53(5):1015–1022CrossRefGoogle Scholar
  13. 13.
    Lee SW, Kim KM, Bang IC (2013) Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid. Int J Heat Mass Transf 65:348–356CrossRefGoogle Scholar
  14. 14.
    Abedini E, Behzadmehr A, Sarvari S, Mansouri S (2013) Numerical investigation of subcooled flow boiling of a nanofluid. Int J Therm Sci 64:232–239CrossRefGoogle Scholar
  15. 15.
    Valizadeh Z, Shams M (2016) Numerical investigation of water-based nanofluid subcooled flow boiling by three-phase Euler–Euler, Euler–Lagrange approach. Heat Mass Transf 52(8):1501–1514CrossRefGoogle Scholar
  16. 16.
    Baniamerian Z, Mehdipour R, Aghanajafi C (2012) Analytical simulation of annular two-phase flow considering the four involved mass transfers. J Fluids Eng 134(8):081301CrossRefGoogle Scholar
  17. 17.
    Deng H, Fernandino M, Dorao CA (2015) Modeling of annular-mist flow during mixtures boiling. Appl Therm Eng 91:463–470CrossRefGoogle Scholar
  18. 18.
    Qu W, Mudawar I (2003) Flow boiling heat transfer in two-phase micro-channel heat sinks––II. Annular two-phase flow model. Int J Heat Mass Transf 46(15):2773–2784CrossRefGoogle Scholar
  19. 19.
    Baniamerian Z, Mashayekhi M (2017) Experimental assessment of saturation behavior of boiling nanofluids: pressure and temperature. J Thermophys Heat Transf 31:732–738CrossRefGoogle Scholar
  20. 20.
    Baniamerian Z, Mashayekhi M (2017) Evaporative behavior of gold-based hybrid nanofluids. J Thermophys Heat Transf.  https://doi.org/10.2514/1.T5220
  21. 21.
    Kreith F, Boehm RF (1999) Heat and mass transfer mechanical engineering handbook. CRC Press LLC, Boca RatonGoogle Scholar
  22. 22.
    Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer Int J 11(2):151–170CrossRefGoogle Scholar
  23. 23.
    Zhao J-J, Duan Y-Y, Wang X-D, Wang B-X (2011) Effect of nanofluids on thin film evaporation in microchannels. J Nanopart Res 13(10):5033CrossRefGoogle Scholar
  24. 24.
    Shima P, Philip J, Raj B (2009) Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl Phys Lett 94(22):223101CrossRefGoogle Scholar
  25. 25.
    Jang SP, Choi SU (2007) Effects of various parameters on nanofluid thermal conductivity. J Heat Transf 129(5):617–623CrossRefGoogle Scholar
  26. 26.
    Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692–6699CrossRefGoogle Scholar
  27. 27.
    Murshed S, Leong K, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47(5):560–568CrossRefGoogle Scholar
  28. 28.
    Darcy H (1856) Les fontaines publiques de la ville de Dijon: exposition et application. Victor DalmontGoogle Scholar
  29. 29.
    Kaviany M (2012) Principles of heat transfer in porous media. Springer Science & Business MediaGoogle Scholar
  30. 30.
    Taitel Y, Dukler A (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AICHE J 22(1):47–55CrossRefGoogle Scholar
  31. 31.
    Kim S-M, Mudawar I (2014) Theoretical model for local heat transfer coefficient for annular flow boiling in circular mini/micro-channels. Int J Heat Mass Transf 73:731–742CrossRefGoogle Scholar
  32. 32.
    Kumar CS, Suresh S, Praveen A, Kumar MS, Gopi V (2016) Effect of surfactant addition on hydrophilicity of ZnO–Al 2 O 3 composite and enhancement of flow boiling heat transfer. Exp Thermal Fluid Sci 70:325–334CrossRefGoogle Scholar
  33. 33.
    Sarwar MS, Jeong YH, Chang SH (2007) Subcooled flow boiling CHF enhancement with porous surface coatings. Int J Heat Mass Transf 50(17):3649–3657CrossRefGoogle Scholar
  34. 34.
    Stutz B, Morceli CHS, Da Silva MDF, Cioulachtjian S, Bonjour J (2011) Influence of nanoparticle surface coating on pool boiling. Exp Thermal Fluid Sci 35(7):1239–1249CrossRefGoogle Scholar
  35. 35.
    Whalley P, Hutchinson P, Hewitt G (1973) The calculation of critical heat flux in forced convection boiling, vol 7520. AEREGoogle Scholar
  36. 36.
    Baniamerian Z, Aghanajafi C (2010) Simulation of entrainment mass transfer in annular two-phase flow using the physical concept. J Mech 26(3):385–392CrossRefGoogle Scholar
  37. 37.
    Schadel S, Leman G, Binder J, Hanratty T (1990) Rates of atomization and deposition in vertical annular flow. Int J Multiphase Flow 16(3):363–374CrossRefzbMATHGoogle Scholar
  38. 38.
    Ueda T, Inoue M, Nagatome S (1981) Critical heat flux and droplet entrainment rate in boiling of falling liquid films. Int J Heat Mass Transf 24(7):1257–1266CrossRefGoogle Scholar
  39. 39.
    Shah RK, London AL (2014) Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. AcademicGoogle Scholar
  40. 40.
    Wang Y, Deng K, Liu B, Wu J, Su G (2016) Experimental study on Al2O3/H2O nanofluid flow boiling heat transfer under different pressures. In: ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, pp V001T002A002-V001T002A002Google Scholar
  41. 41.
    Moreira TA, do Nascimento FJ, Ribatski G, Group HTR (2017) An investigation of the effect of nanoparticle composition and dimension on the heat transfer coefficient during flow boiling of aqueous nanofluids in small diameter channels (1.1 mm). Exp Thermal Fluid Sci 89:72–89CrossRefGoogle Scholar
  42. 42.
    Boudouh M, Gualous HL, De Labachelerie M (2010) Local convective boiling heat transfer and pressure drop of nanofluid in narrow rectangular channels. Appl Therm Eng 30(17):2619–2631CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTafresh UniversityTafreshIran

Personalised recommendations