Advertisement

Experimental and numerical investigation on a simple droplet coalescence design in microchannels

  • Bin Xu
  • Teck Neng Wong
  • Desheng Zhang
  • Xi Shen
Original
  • 11 Downloads

Abstract

A simple, low-cost and reliable method for the formation of temperature-induced droplet coalescence is proposed and demonstrated experimentally and numerically. The formation process consists of two steps: (1) the formation of water-in-oil droplets at the flow-focusing junction and (2) the formation of temperature-induced droplet coalescence in the merging chamber by a resistive heater. Since the droplets flows from directly from the first step to the second step in the microchannel without any disturbance, problems such as droplet breakup, leakage and contamination can be avoided. The merging process of two neighboring droplets was investigated by adjusting the applied voltage, flow rate ratio between water and oil and total flowrate. In the simulation, the flow in the process of droplet coalescence is simulated using the Finite Volume Method, and the interface is captured using the Level Set Method. The presented technique could be used for merging and mixing in droplet-based lab-on-a-chip platforms.

Notes

Compliance with ethical standards

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Chen X, Brukson A, Ren CL (2017) A simple droplet merger design for controlled reaction volumes. Microfluid Nanofluid 21(3)Google Scholar
  2. 2.
    Handique K, Burns MA (2001) Mathematical modeling of drop mixing in a slit-type microchannel. J Micromech Microeng 11(5):548–554CrossRefGoogle Scholar
  3. 3.
    Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angewandte Chemie – Int Edit 45(44):7336–7356CrossRefGoogle Scholar
  4. 4.
    Guttenberg Z, Müller H, Habermüller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A (2005) Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip - Miniaturisation Chem Biol 5(3):308–317CrossRefGoogle Scholar
  5. 5.
    Zheng B, Roach LS, Ismagilov RF (2003) Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J Am Chem Soc 125(37):11170–11171CrossRefGoogle Scholar
  6. 6.
    Hatakeyama T, Chen DL, Ismagilov RF (2006) Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS. J Am Chem Soc 128(8):2518–2519CrossRefGoogle Scholar
  7. 7.
    Wang S, Lan Z, Peng B, Bai T, Ma X (2012) Characteristics of droplet coalescence and self-propelling on superhydrophobic surface. Huagong Xuebao/CIESC J 63(SUPPL.1):17–22Google Scholar
  8. 8.
    Wang K, Yi S, Zhou Q, Luo G (2016) Effect of nano-particles on droplet coalescence in microchannel device. Huagong Xuebao/CIESC J 67(2):469–475Google Scholar
  9. 9.
    Guan Y, Tong AY (2013) Numerical modeling of droplet splitting and merging in a parallel-plate electrowetting-on-dielectric (EWOD) device. In ASME 2013 4th international conference on micro/nanoscale heat and mass transfer, MNHMT 2013, December 11, 2013 - December 14, 2013. American Society of Mechanical Engineers (ASME), Hong KongGoogle Scholar
  10. 10.
    Dong C, Jia YW, Chen TL, Gao J, Wan L, Mak PI, Vai MI, Martins RP (2016) Digital microfluidic chip with blade structures for precise droplet splitting. In 20th international conference on miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016, October 9, 2016 - October 13, 2016. Chemical and Biological Microsystems Society, Dublin, IrelandGoogle Scholar
  11. 11.
    Harada Y, Yoon DH, Sekiguchi T, Shoji S (2012) Size-oriented passive droplet sorting by using surface free energy with micro guide groove. In 2012 IEEE 25th international conference on micro electro mechanical systems, MEMS 2012, January 29, 2012 - February 2, 2012. Institute of Electrical and Electronics Engineers Inc, ParisGoogle Scholar
  12. 12.
    Chen Y, Tian Y, Xu Z, Wang X, Yu S, Dong L (2016) Microfluidic droplet sorting using integrated bilayer micro-valves. Appl Phys Lett 109(14)Google Scholar
  13. 13.
    Gopalan P, Ahn B, Oh KW (2010) Serial microfluidic device for micro droplet trapping and pairing. In ASME 2010 international mechanical engineering congress and exposition, IMECE 2010, November 12, 2010 - November 18, 2010. American Society of Mechanical Engineers, VancouverGoogle Scholar
  14. 14.
    Xu J, B Ahn, H Lee, K Lee, R Panchapakesan, L Xu, and KW Oh (2011) Droplet-based microfluidic devices for multiple-droplet trapping, storing, and clustering employing guiding tracks and forward/backward flows. In 15th international conference on miniaturized Systems for Chemistry and Life Sciences 2011, MicroTAS 2011, October 2, 2011 - October 6, 2011. Seattle: Chemical and Biological Microsystems SocietyGoogle Scholar
  15. 15.
    Olbricht WL, Kung DM (1987) The interaction and coalescence of liquid drops in flow through a capillary tube. J Colloid Interface Sci 120(1):229–244CrossRefGoogle Scholar
  16. 16.
    Köhler JM, Henkel T, Grodrian A, Kirner T, Roth M, Martin K, Metze J (2004) Digital reaction technology by micro segmented flow - components, concepts and applications. Chem Eng J 101(1-3):201–216CrossRefGoogle Scholar
  17. 17.
    Chokkalingam V, Weidenhof B, Krämer M, Maier WF, Herminghaus S, Seemann R (2010) Optimized droplet-based microfluidics scheme for sol-gel reactions. Lab Chip - Miniaturisation Chem Biol 10(13):1700–1705CrossRefGoogle Scholar
  18. 18.
    Tan YC, Fisher JS, Lee AI, Cristini V, Lee AP (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip - Miniaturisation Chem Biol 4(4):292–298CrossRefGoogle Scholar
  19. 19.
    Bremond N, Thiam AR, Bibette J (2008) Decompressing emulsion droplets favors coalescence. Phys Rev Lett 100(2)Google Scholar
  20. 20.
    Hung LH, Choi KM, Tseng WY, Tan YC, Shea KJ, Lee AP (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip - Miniaturisation Chem Biol 6(2):174–178CrossRefGoogle Scholar
  21. 21.
    Niu X, Gulati S, Edel JB, Demello AJ (2008) Pillar-induced droplet merging in microfluidic circuits. Lab Chip – Miniaturisation Chem Biol 8(11):1837–1841CrossRefGoogle Scholar
  22. 22.
    Chabert M, Dorfman KD, Viovy JL (2005) Droplet fusion by alternating current (AC) field electrocoalescence in microchannels. Electrophoresis 26(19):3706–3715CrossRefGoogle Scholar
  23. 23.
    Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angewandte Chemie – Int Edit 45(16):2556–2560CrossRefGoogle Scholar
  24. 24.
    Sarrazin F, Prat L, Di Miceli N, Cristobal G, Link DR, Weitz DA (2007) Mixing characterization inside microdroplets engineered on a microcoalescer. Chem Eng Sci 62(4):1042–1048CrossRefGoogle Scholar
  25. 25.
    Zagnoni M, Le Lain G, Cooper JM (2010) Electrocoalescence mechanisms of microdroplets using localized electric fields in microfluidic channels. Langmuir 26(18):14443–14449CrossRefGoogle Scholar
  26. 26.
    Niu X, Gielen F, DeMello AJ, Edel JB (2009) Electro-coalescence of digitally controlled droplets. Anal Chem 81(17):7321–7325CrossRefGoogle Scholar
  27. 27.
    Wang W, Yang C, Li CM (2009) Efficient on-demand compound droplet formation: from microfluidics to microdroplets as miniaturized laboratories. Small 5(10):1149–1152Google Scholar
  28. 28.
    Schwartz JA, Vykoukal JV, Gascoyne PRC (2004) Droplet-based chemistry on a programmable micro-chip. Lab Chip - Miniaturisation Chem Biol 4(1):11–17CrossRefGoogle Scholar
  29. 29.
    Singh P, Aubry N (2007) Transport and deformation of droplets in a microdevice using dielectrophoresis. Electrophoresis 28(4):644–657CrossRefGoogle Scholar
  30. 30.
    Wang W, Yang C, Li CM (2009) On-demand microfluidic droplet trapping and fusion for on-chip static droplet assays. Lab Chip - Miniaturisation Chem Biol 9(11):1504–1506CrossRefGoogle Scholar
  31. 31.
    Lin BC (2008) Y.C. Su, On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves. J Micromech Microeng 18(11)Google Scholar
  32. 32.
    Ray A, Varma VB, Wang Z, Wang Z, Jayaneel PJ, Sudharsan NM, Ramanujan RV (2016) Magnetic droplet merging by hybrid magnetic fields. IEEE Magn Lett 7Google Scholar
  33. 33.
    Khaw, M.-K., F. Mohd-Yasin, and N.-T. Nguyen, Magnetically-actuated mixing and merging of acid-base micro-droplets on open surfaces: Preliminary study. Sensors (Switzerland), 2018. 18(6)Google Scholar
  34. 34.
    Park, S.-Y., S. Kalimb, C. Callahan, M.A. Teitell, and E.P.Y. Chiou. Light-driven microfluidic platforms for droplet-based biochemical analysis. in Optical Trapping and Optical Micromanipulation VI, August 2, 2009 - August 6, 2009. 2009. San Diego, CA, United states: SPIEGoogle Scholar
  35. 35.
    Nguyen NT, Huang X (2005) Thermocapillary effect of a liquid plug in transient temperature fields. Japan J Appl Phys, Part 1: Reg Pap Short Notes Rev Pap 44(2):1139–1142CrossRefGoogle Scholar
  36. 36.
    Baroud, C.N., M. Robert De Saint Vincent, and J.P. Delville, An optical toolbox for total control of droplet microfluidics. Lab Chip - Miniaturisation Chem Biol, 2007. 7(8): p. 1029-1033Google Scholar
  37. 37.
    Lorenz RM, Edgar JS, Jeffries GDM, Zhao Y, McGloin D, Chiu DT (2007) Vortex-trap-induced fusion of femtoliter-volume aqueous droplets. Anal Chem 79(1):224–228CrossRefGoogle Scholar
  38. 38.
    Perch-Nielsen IR, Rodrigo PJ, Alonzo CA, Glückstad J (2006) Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment. Opt Express 14(25):12199–12205CrossRefGoogle Scholar
  39. 39.
    Davanlou A, Kumar R (2015) Counter-current motion of a droplet levitated on a liquid film undergoing Marangoni convection. Int J Heat Mass Transf 89:345–352CrossRefGoogle Scholar
  40. 40.
    Sun Y, Kwok YC, Nguyen NT (2006) Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation. J Micromech Microeng 16(8):1681–1688CrossRefGoogle Scholar
  41. 41.
    Lou S, Zhao G, Wang R, Wu X (2008) Numerical simulation of steady and unsteady aluminum profile extrusion processes using finite volume method. Eng Comput (Swansea, Wales) 25(6):589–605CrossRefzbMATHGoogle Scholar
  42. 42.
    Yap YF, Li HY, Lou J, Pan LS, Shang Z (2017) Numerical modeling of three-phase flow with phase change using the level-set method. Int J Heat Mass Transf 115:730–740CrossRefGoogle Scholar
  43. 43.
    Cheng YP, TS Lee, HT Low, WQ Tao (2007) An efficient and robust numerical scheme for the SIMPLER algorithm on non-orthogonal curvilinear coordinates: CLEARER. Taylor and Francis IncGoogle Scholar
  44. 44.
    Kun ZHANG, Songying C (2018) Numerical simulation of self-excited pulsed cavitation nozzle in three-dimensional unsteady flow. J Drainage Irrig Mach Eng 36(4):288–293Google Scholar
  45. 45.
    Zhao H-K, Osher S, Fedkiw R (2001) Fast surface reconstruction using the level set method. In IEEE workshop on Variational and level set methods in computer vision, VLSM 2001, July 13, 2001. Institute of Electrical and Electronics Engineers Inc, VancouverGoogle Scholar
  46. 46.
    Jiang G-S, Peng D (2000) Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J Sci Comput 21(6):2126–2143MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Serna S, Qian J (2006) Fifth-order weighted power-ENO schemes for Hamilton-Jacobi equations. J Sci Comput 29(1):57–81MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Zheng S, Ouyang J, Zhang L, Zhang H (2009) Dynamic simulation of fusion process and analysis of flow field. J Reinf Plast Compos 28(9):1049–1058CrossRefGoogle Scholar
  49. 49.
    Nguyen N-T, Ting T-H, Yap Y-F, Wong T-N, Chai JC-K, Ong W-L, Zhou J, Tan S-H, Yobas L (2007) Thermally mediated droplet formation in microchannels. Appl Phys Lett 91(8)Google Scholar
  50. 50.
    Tan HY, Loke WK, Tan YT, Nguyen NT (2008) A lab-on-a-chip for detection of nerve agent sarin in blood. Lab Chip - Miniaturisation Chem Biol 8(6):885–891CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center of Fluid Machinery Engineering and TechnologyJiangsu UniversityZhenjiangChina
  2. 2.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations