Advertisement

Heat and Mass Transfer

, Volume 55, Issue 1, pp 17–31 | Cite as

Condensation of binary mixtures on horizontal tubes

  • A. BüchnerEmail author
  • A. Reif
  • S. Rehfeldt
  • H. Klein
Original
  • 112 Downloads

Abstract

The two most common models to describe the condensation of binary mixtures are the equilibrium model by Silver (Trans Inst Chem Eng 25:30–42, 1947) and the film model by Colburn and Drew (Transactions of the American Institute of Chemical Engineers 33:197–215, 1937), which is stated by Webb et al. (Int J Heat Mass Transf 39:3147–3156, 1996) as more accurate. The film model describes the outer heat transfer coefficient by subdividing it into two separate resistances against the heat transfer. The resistance of the liquid condensate film on the tube can be calculated with equations for the condensation of pure substances for the analogous flow pattern and geometry using the property data of the mixture. The resistance in the gas phase can be described by a thermodynamic parameter Z and the single phase heat transfer coefficient αG. In this work measurements for condensation of the binary mixtures n-pentane/iso-octane and iso-propanol/water on horizontal tubes for free convection are carried out. The obtained results are compared with the film model by Colburn and Drew (Transactions of the American Institute of Chemical Engineers 33:197–215, 1937). The comparison shows a rather big deviation between the theoretical model and the experimental results. To improve the prediction quality an own model based on dimensionless numbers is proposed, which describes the experimental results of this work significantly better than the film model.

Notes

Acknowledgements

The authors gratefully acknowledge the support of the German Federal Ministry of Education and Research (BMBF) and Wieland-Werke AG.

References

  1. 1.
    Silver L (1947) Gas cooling with aqueous condensation. Trans Inst Chem Eng 25:30–42Google Scholar
  2. 2.
    Colburn A, Drew T (1937) The condensation of mixed vapors. Transactions of the American Institute of Chemical Engineers 33:197–215Google Scholar
  3. 3.
    Webb D, Fahrner M, Schwaab R (1996) The relationship between the colburn and silver methods of condenser design. Int J Heat Mass Transfer 39:3147–3156CrossRefGoogle Scholar
  4. 4.
    Honda H, Nozu S, Mitsumori K (1983) Augmentation of condensation on horizontal finned tubes by attaching a porous drainage plate. Proceedings of the ASME-JSME Joint Conference 3:289–296Google Scholar
  5. 5.
    Briggs A, Rose J (1995) Condensation performance of some commercial integral fin tubes with steam and CFC113. Exp Heat Transfer 8:131–143CrossRefGoogle Scholar
  6. 6.
    Kananeh A, Rausch M, Fröba A, Leipertz A (2006) Experimental study of dropwise condensation on plasma-ion implanted stainless steel tubes. Int J Heat Mass Transfer 49:5018–5026CrossRefzbMATHGoogle Scholar
  7. 7.
    Gebauer T, Al-Baadri A, Gotterbarm A, El Hajal J, Leipertz A (2013) Condensation heat transfer on single horizontal smooth and finned tubes and tube bundles for R134a and propane. Int J Heat Mass Transfer 56:516–524CrossRefGoogle Scholar
  8. 8.
    Ji W, Zhao C, Zhang D, Li Z, He Y, Tao W (2014) Condensation of R134a outside single horizontal titanium, cupronickel (B10 and B30), stainless steel and copper tubes. Int J Heat Mass Transfer 77:194–201CrossRefGoogle Scholar
  9. 9.
    Reif A, Büchner A, Rehfeldt S, Klein H (2015) Äußerer Wärmeübergangskoeffizient bei der Kondensation von Reinstoffen an einem horizontalen Rippenrohr. Chemie Ingenieur Technik 87:260–269CrossRefGoogle Scholar
  10. 10.
    Renker W (1954) Der Wärmeübergang bei der Kondensation von Dämpfen in Anwesenheit nicht kondensierbarer Gase. Dissertation, Technische Hochschule DresdenGoogle Scholar
  11. 11.
    Schrader H (1966) Einfluss von Inertgasen auf den Wärmeübergang bei der Kondensation von Dämpfen. Chemie Ingenieur Technik 38:1091–1094CrossRefGoogle Scholar
  12. 12.
    Panagoulias D (1984) Condensation of multicomponent vapours in a semi industrial scale. Dissertation, University of Manchester, Institute of Science and TechnologyGoogle Scholar
  13. 13.
    Shah A, Webb D (1983) Condensation of single and mixed vapours from a non-condensing gas in flow over a horizontal tube bank. International Chemical Engineering Symposium Series 75Google Scholar
  14. 14.
    Mitrovic J (1999) Condensation of pure refrigerants R12, R134a and their mixtures on a horizontal tube with capillary structure: an experimental study. Forsch Ingenieurwes 64:345–359CrossRefGoogle Scholar
  15. 15.
    Belghazi M, Bontemps A, Marvillet C (2002) Filmwise condensation of a pure fluid and a binary mixture in a bundle of enhanced surface tubes. Int J Therm Sci 41:631–638CrossRefGoogle Scholar
  16. 16.
    Honda H, Takamatsu H, Takata N (1999) Condensation of downward-flowing zeotropic mixture HCFC-123/HFC-134a on a staggered bundle of horizontal low-finned tubes. J Heat Transf 121:405–412CrossRefGoogle Scholar
  17. 17.
    Baehr H, Stephan K (2004) Wärme- und Stoffübertragung. Springer, BerlinCrossRefGoogle Scholar
  18. 18.
    Mitrovic J, Gneiting R (1996) Kondensation von Dampfgemischen - teil 1. Forsch Ingenieurwes 62:1–10CrossRefGoogle Scholar
  19. 19.
    Numrich R (2013) Kondensation von Mehrstoffgemischen. VDI Wärmeatlas J2:1029–1039CrossRefGoogle Scholar
  20. 20.
    Büchner A, Reif A, Rehfeldt S, Klein H (2015) Untersuchung der Kondensation von Reinstoffen an einem horizontalen berippten Rohrbündel. Chemie Ingenieur Technik 87:270–279CrossRefGoogle Scholar
  21. 21.
    Polifke W, Kopitz J (2005) Wärmeübertragung. Pearson Studium, MünchenGoogle Scholar
  22. 22.
    Büchner A, Reif A, Rehfeldt S, Klein H (2015) Problematik einheitlicher Betrachtungen des Wärmedurchgangs bei der Kondensation an strukturierten Rohren. Chemie Ingenieur Technik 87:301–305CrossRefGoogle Scholar
  23. 23.
    Gnielinski V (2013) On heat transfer in tubes. Int J Heat Mass Transfer 63:134–140CrossRefGoogle Scholar
  24. 24.
    Konakov P (1946) Eine neue Formel für den Reibungskoeffizienten glatter Rohre (Orig. Russ). Berichte der Akademie der Wissenschaften der UdSSR 7:503–506Google Scholar
  25. 25.
    Büchner A (2016) Kondensation binärer Gemische an horizontalen Rohren. PhD Thesis, Technical University of MunichGoogle Scholar
  26. 26.
    Blaß E (1973) Die Kondensation von binären Dampfgemischen. Chemie Ingenieur Technik 45:865–872CrossRefGoogle Scholar
  27. 27.
    Nußelt W (1916) Die Oberflächenkondensation des Wasserdampfes. Zeitschrift des Vereins deutscher Ingenieure 60:569–575Google Scholar
  28. 28.
    Reif A, Büchner A, Rehfeldt R, Klein H (2016) Outer heat transfer coefficient for condensation of pure components on single horizontal low-finned tubes. Heat and Mass Transf.  https://doi.org/10.1007/s00231-017-2184-3
  29. 29.
    Briggs A, Rose J (1994) Effect of fin efficiency on a model for condensation heat transfer on a horizontal. Int J Heat Mass Transfer 37:457–463CrossRefGoogle Scholar
  30. 30.
    Kumar R, Varma HK, Mohanty B, Agrawal KN (2002) Prediction of heat transfer coefficient during condensation of water and R-134a on single horizontal integral-fin tubes. Int J Refrig 25:111–126CrossRefGoogle Scholar
  31. 31.
    Al-Badri AR, Gebauer T, Leipertz A, Fröba AP (2013) Element by element prediction model for condensation heat transfer on a horizontal integral finned tube. Int J Heat Mass Transfer 62:463–472CrossRefGoogle Scholar
  32. 32.
    Fullarton D, Schlünder E-U (2006) Filmkondensation von binären Gemischen ohne und mit Inertgas. VDI Wärmeatlas, Jb 1029–1040Google Scholar
  33. 33.
    Ackermann G (1937) Wärmeübergang und molekulare Stoffübertragung im gleichen Feld bei großen Temperatur- und Parialdruckdifferenzen. VDI Forschungsheft 382:1–16Google Scholar
  34. 34.
    Klan H (2013) Wärmeübertragung durch freie Konvektion: Außenströmung. VDI Wärmeatlas F2:757–764CrossRefGoogle Scholar
  35. 35.
    Bird R, Stewart W, Lightfoot E (2007) Transport phenomena. Wiley, New YorkGoogle Scholar
  36. 36.
    Incropera F, DeWitt D (2001) Fundamentals of heat and mass transfer. Wiley, New YorkGoogle Scholar
  37. 37.
    Steeman H-J, Janssens A, De Paepe M (2009) On the applicability of the heat and mass transfer analogy in indoor air flows. Int J Heat Mass Transfer 52:1431–1442CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Plant and Process Technology, Department of Mechanical EngineeringTechnical University of MunichMunichGermany

Personalised recommendations