Skip to main content
Log in

Study of coupled double diffusive convection–radiation in a tilted cavity via a hybrid multi-relaxation time-lattice Boltzmann-finite difference and discrete ordinate methods

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The coupled double diffusive natural convection and radiation in a tilted and differentially heated square cavity containing a non-gray air-CO2 (or air-H2O) mixtures was numerically investigated. The horizontal walls are insulated and impermeable and the vertical walls are maintained at different temperatures and concentrations. The hybrid lattice Boltzmann method with the multiple-relaxation time model is used to compute the hydrodynamics and the finite difference method to determine temperatures and concentrations. The discrete ordinates method combined to the spectral line-based weighted sum of gray gases model is used to compute the radiative term and its spectral aspect. The effects of the inclination angle on the flow, thermal and concentration fields are analyzed for both aiding and opposing cases. It was found that radiation gas modifies the structure of the velocity and thermal fields by generating inclined stratifications and promoting the instabilities in opposing flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

a k :

Weighting factor in SLW model

C :

Molecular concentration (mol m−3)

C 0 :

Reference concentration = (Cl + Ch)/2 (mol m−3)

C abs :

Absorption cross-sections (m2 mol−1)

D :

Mass diffusivity (m2 s−1)

g :

Gravitational acceleration (m s−2)

I :

Radiation intensity (W m−2 sr−1)

I 0 :

Black body radiation intensity (Wm−2sr−1)

k :

Thermal conductivity (W m−1 K−1)

L :

Enclosure width (m)

M g :

Number of discrete directions

Le :

Lewis number α/D

\( \overrightarrow {n} \) :

Outer unit vector normal

N :

Buoyancy ratio

Nu C , R :

Averaged convective (or radiative) Nusselt number

Nu T :

Averaged total Nusselt number at the side walls

Pl :

Planck number = (k/L)/(4σ T 40 )

Pr :

Prandtl number = ν/α

q R :

Radiative heat flux (Wm−2)

Ra :

Rayleigh number = (T h   T c )L 3 /να

Sh :

Sherwood number

T :

Temperature (K)

T h , T c :

Hot and cold wall temperatures (K)

T 0 :

Average temperature = (T h  + T c )/2 (K)

u, v :

Velocity components (m s−1)

w m :

Quadrature weights

x, y :

Cartesian coordinates (m)

α :

Thermal diffusivity (m2 s−1)

β T(C) :

Thermal (mass) expansion coefficient [K−1 (m3)]

ε w :

Emissivity of radiative surface

φ :

Inclination angle

μ, η:

Direction cosines

ν:

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

κ :

Absorption coefficient (m−1)

σ :

Stefan-Boltzmann constant (W K−4 m−2)

ψ :

Stream function (m2 s)

\( \overrightarrow {\Gamma } \) :

Direction vector

\( \overrightarrow {\nabla } \) :

Gradient operator

c, h, (l, h):

Cold, hot, (concentration: low, high)

f :

Fluid

m :

Index for discrete direction in the DOM

R :

Radiative quantity

s :

Solid

T :

Total conductive and radiative quantity

w :

Wall

0 :

Reference state

References

  1. Modest MF (2003) Radiative heat transfer, 2nd edn. Academic Press, Burlington, pp 498–538. doi:10.1016/B978-012503163-9/50017-5

  2. Lari K, Baneshi M, Gandjalikhan Nassaba SA, Komiya A, Maruyama S (2011) Combined heat transfer of radiation and natural convection in a square cavity containing participating gases. Int J Heat Mass Transfer 54:5087–5099

    Article  MATH  Google Scholar 

  3. Liu F, Smallwood GJ, Gülder OL (2002) An accurate efficient and flexible SNBCK-based unified band model for calculations of spectrally resolved and integrated quantities in participating media containing real-gases. In: Proceedings of the 12th international heat transfer conference, pp 663–668

  4. Denison MK, Webb BW (1993) A spectral line-based weighted-sum-of-grey-gases model for arbitrary RTE solvers. J Heat Transfer 115:1004–1012

    Article  Google Scholar 

  5. Denison MK, Webb BW (1995) The spectral line-based weighted-sum-of-grey-gases model in non-isothermal non-homogeneous media. J. Heat Transfer 117:339–365

    Google Scholar 

  6. Nimeti D, Selçuk N (2013) An application of spectral line-based weighted sum of grey gases (SLW) model with geometric optics approximation for radiative heat transfer in 3-D participating media. Appl Therm Eng 50:89–93

    Article  Google Scholar 

  7. Yin C, Johansen LCR, Rosendahl L, Kær SK (2010) New weighted sum of gray gases model applicable to computational fluid dynamics (CFD) modeling of oxy-fuel combustion: derivation, validation, and implementation. Energy Fuels 24:6275–6282

    Article  Google Scholar 

  8. Solovjov VP, Webb BW (2001) An efficient method for modeling radiative transfer in multicomponent gas mixtures with soot. J Heat Transfer 123:450–457

    Article  Google Scholar 

  9. Modest MF, Zhang H (2002) The full-spectrum correlated-k distribution for thermal radiation distribution for thermal radiation from molecular gas-particulate mixtures. J Heat Transfer 124(1):30–38

    Article  Google Scholar 

  10. Zhang H, Modest MF (2002) A multi-scale full-spectrum correlated-k distribution for radiative heat transfer in inhomogeneous gas mixtures. J Quant Spectrosc Radiat Transfer 73:349–360

    Article  Google Scholar 

  11. Zhang H, Modest MF (2003) Scalable multi-group full-spectrum correlated-k distributions for radiative transfer calculations. J Heat Transfer 125:454–461

    Article  Google Scholar 

  12. Modest MF (2003) Narrow-band and full-spectrum k-distribution for radiative heat transfer correlated-k vs. scaling approximation. J Quant Spectrosc Radiat Transfer 76:69–83

    Article  Google Scholar 

  13. Fusegi T, Farouk B (1989) Laminar and turbulent natural convection–radiation interaction in a square enclosure filled with a no gray gas. Numer Heat Transfer Part A 15:303–322

    Article  MATH  Google Scholar 

  14. Coelho PJ, Teerling OJ, Roekaerts D (2003) Spectral radiative effects and turbulence/radiation interaction in a non-luminous turbulent jet diffusion flame. Combust Flame 133:75–91

    Article  Google Scholar 

  15. Sediki E, Soufiani A, Sifaoui MS (2003) Combined gas radiation and laminar mixed convection in vertical circular tubes. Int J Heat Fluid Flow 24:736–746

    Article  Google Scholar 

  16. Colomer G, Consul R, Oliva A (2007) Coupled radiation and natural convection: different approaches of the SLW model for a non-gray gas mixture. J Quant Spectrosc Radiat Transfer 107:30–46

    Article  Google Scholar 

  17. Rafieivand M (1999) Etude numérique de la convection de double diffusion en présence de rayonnement en cavité rectangulaire, Doctorat Thesis, University of Poitiers, Poitiers, France

  18. Mezrhab A, Lemonnier D, Meftah S, Benbrik A (2008) Numerical study of double diffusion convection coupled to radiation in a square cavity filled with a participating grey gas. J Phys D Appl Phys 41(19):195501–195517

    Article  Google Scholar 

  19. Moufekkir F, Moussaoui MA, Mezrhab A, Lemonnier D, Naji H (2012) MRT-lattice Boltzmann computations of natural convection and volumetric radiation in a tilted square enclosure. Int J Therm Sci 54:125–141

    Article  Google Scholar 

  20. Moufekkir F, Moussaoui MA, Mezrhab A, Naji H, Lemonnier D (2012) Numerical prediction of heat transfer by natural convection and radiation in an enclosure filled with an isotropic scattering medium. J Quant Spectrosc Radiat Transfer 113:1689–1704

    Article  Google Scholar 

  21. Moufekkir F, Moussaoui MA, Mezrhab A, Bouzidi M, Laraqi N (2013) Study of double-diffusive natural convection and radiation in an inclined cavity using lattice Boltzmann method. Int J Therm Sci 63:65–86

    Article  Google Scholar 

  22. D’Humières D (1992) Generalized lattice Boltzmann equations. In: Shizgal BD, Weaver DP (eds) Rarefied gas dynamics: theory and simulations, vol 159. Progress in Aerospace, Astronaut, AIAA, Washington, pp 450–458

    Google Scholar 

  23. Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of a Boltzmann lattice fluid with boundaries. Phys Fluids 13:3452–3461

    Article  Google Scholar 

  24. Meftah S, Ibrahim A, Lemonnier D, Benbrik A (2009) Coupled radiation and double diffusive convection in non-gray air-CO2 and air-H2O mixtures in cooperating situations. Numer Heat Transfer Part A 56:1–19

    Article  Google Scholar 

  25. Laouar-Meftah S, Cherifi M, Lemonnier D, Benbrik A (2014) Gas radiation effects on opposing double-diffusive convection in a non-gray air-H2O mixture. Int J Therm Sci 77:38–46

    Article  Google Scholar 

  26. Laouar-Meftah S (2010) Modeling of Natural double diffusion convection in mixture gases absorbing and emitting radiation, PhD thesis, University M’hamed Bougara-Boumerdes Algeria

  27. Poling BE, Prausnitz JM, O’Connell JP (2004) The properties of gases and liquids, 5th edn, Chap. 9–10, McGraw-Hill, Boston

  28. Bhatnagar P, Gross E, Krook M (1954) A model for collision process in gases. I. Small amplitude process in charged and neutral one-component systems. Phys Rev 94(3):511–525

    Article  MATH  Google Scholar 

  29. Lallemand P, Luo LS (2000) Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance and stability. Phys Rev E 61:6546–6562

    Article  MathSciNet  Google Scholar 

  30. Niu XD, Shu C, Chew YT, Peng Y (2006) A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys Lett A 354:173–182

    Article  MATH  Google Scholar 

  31. Mezrhab A, Moussaoui MA, Naji H (2008) Lattice Boltzmann simulation of surface radiation and natural convection in a square cavity with an inner cylinder. J Phys D Appl Phys 41:551–5517

    Google Scholar 

  32. Lallemand P, Luo LS (2003) Lattice Boltzmann method for moving boundaries. J Comput Phys 184:406–421

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Dr. D. Lemonnier (Director of Research at CNRS, Institut Pprime, CNRS-ENSMA-University of Poitiers, France) for kindly providing us the subroutines (DOM & SLW) for computations of the radiation. In addition, the authors thank the reviewers for the thorough reading of the manuscript and for their valuable comments, which led to significant improvements in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mezrhab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moufekkir, F., Moussaoui, M.A., Mezrhab, A. et al. Study of coupled double diffusive convection–radiation in a tilted cavity via a hybrid multi-relaxation time-lattice Boltzmann-finite difference and discrete ordinate methods. Heat Mass Transfer 51, 567–586 (2015). https://doi.org/10.1007/s00231-014-1423-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1423-0

Keywords

Navigation