Advertisement

Integral estimates for energy densities of non-constant harmonic maps

  • Tôru NakajimaEmail author
Article
  • 24 Downloads

Abstract

Integral estimates of energy densities of non-constant harmonic maps are proved. One of the estimates is used to obtain a lower bound of the Dirichlet energy of non null-homotopic maps from two dimensional manifolds with positive Euler characteristics. An application to the regularity theory of energy minimizing maps is also given.

Mathematics Subject Classification

35A15 53C43 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Eells, J., Lemaire, L.: Selected topics in harmonic maps. In: CBMS Regional Conference Series in Mathematics, vol. 50, American Mathematical Society, Providendem (1983)Google Scholar
  2. 2.
    Hebey, E.: Nonlinear analysis on manifolds: sobolev spaces and inequalities. In: Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, USA, (1999)Google Scholar
  3. 3.
    Ilias, S.: Inégalités de Sobolev et eésultats d’isolement pour les applications harmoniques. J. Funct. Anal. 139, 182–195 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Jost, J.: Two-dimensional geometric variational problems. Pure and applied mathematics. A Wiley-Interscience Publication. John Wiley & Sons Ltd., Chichester (1991)Google Scholar
  5. 5.
    Kokarev, G.: Curvature and bubble convergence of harmonic maps. J. Geom. Anal. 23, 1058–1077 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lin, F.H., Wang, C.Y.: The Analysis of Harmonic Maps and Their Heat Flows. World Scientific Publishing Co. Pte. Ltd., Hackensack (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Matei, A.-M.: Gap phenomena for \(p\)-harmonic map. Ann. Glob. Anal. Geom. 18, 541–554 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Nakajima, H.: Yau’s trick. Sugaku 41, 253–258 (1989)Google Scholar
  9. 9.
    Okayasu, T.: Regualrity of minimizing harmonic maps into \(S^4\), \(S^5\) and symmetric spaces. Math. Ann. 298, 193–205 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Schoen, R., Uhlenbeck, K.: A regularity theory for hamornic maps. J. Differential Geom. 17(2), 307–335 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60, 558–581 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Struwe, M.: Geometric evolution problems. In: Nonlinear Partial Differential Equations in Differential Geometry (Park City, UT, 1992), Mathematics Series, vol. 2, pp. 257–339. American Mathematical Society, IAS/Park CityGoogle Scholar
  13. 13.
    Urakawa, H.: Calculus of variations and harmonic maps. Translations of Mathematical Monographs, vol. 132, American Mathematical Society, Providence (1993)Google Scholar
  14. 14.
    Xin, Y.: Geometry of harmonic maps. In: Progress in Nonlinear Partial Differential Equations and their Applications, vol. 23, Birkhäuser, Boston (1996)Google Scholar
  15. 15.
    Yamada, S.: On the ranks of harmonic maps. Commun. Partial Differ. Equ. 23(11–12), 1969–1993 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical and System Engineering, Faculty of EngineeringShizuoka UniversityHamamatsuJapan

Personalised recommendations