Gradient estimates for a nonlinear parabolic equation and Liouville theorems

  • Jia-Yong WuEmail author


We establish local elliptic and parabolic gradient estimates for positive smooth solutions to a nonlinear parabolic equation on a smooth metric measure space. As applications, we determine various conditions on the equation’s coefficients and the growth of solutions that guarantee the nonexistence of nontrivial positive smooth solutions to many special cases of the nonlinear equation. In particular, we apply gradient estimates to discuss some Yamabe-type problems of complete Riemannian manifolds and smooth metric measure spaces.

Mathematics Subject Classification

Primary 53C21 58J35 Secondary 35B53 35K55 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author thanks Professor Jeffrey S. Case for helpful discussions. The author also thanks the referee for making valuable comments and suggestions and pointing out many errors which helped to improve the exposition of the paper. This work is supported by the NSFC (11671141) and the Natural Science Foundation of Shanghai (17ZR1412800).


  1. 1.
    Aronson, D.G., Bénilan, P.: Régularité des solutions de l’équation des milieux poreux dans \({\mathbb{R}}^n\). C. R. Acad. Sci. Paris. Sér. A B 288, A103–A105 (1979)zbMATHGoogle Scholar
  2. 2.
    Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269–296 (1976)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bailesteanua, M.: A Harnack inequality for the parabolic Allen–Cahn equation. Ann. Global Anal. Geom. 51, 367–378 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bailesteanua, M., Cao, X.-D., Pulemotov, A.: Gradient estimates for the heat equation under the Ricci flow. J. Funct. Anal. 258, 3517–3542 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bakry, D., Emery, M.: Diffusion hypercontractivitives. In: Séminaire de Probabilités XIX, 1983/1984, Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985)Google Scholar
  6. 6.
    Bismuth, S.: Prescribed scalar curvature on a complete Riemannian manifold in the negative case. J. Math. Pures Appl. 79, 941–951 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Caffarelli, L.A., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Calabi, E.: An extension of E. Hopf’s maximum principle with an application to Riemannian geometry. Duke Math. J. 25, 45–56 (1958)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cantrell, R.S., Cosner, C.: Diffusive logistic equations with indefinite weights: population models in a disrupted environments. Proc. R. Soc. Edinb. 112A, 293–318 (1989)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cao, H.-D.: Recent progress on Ricci solitons. In: Recent Advances in Geometric Analysis, Advanced Lectures in Mathematics (ALM), vol. 11, pp. 1–38. International Press, Somerville (2010)Google Scholar
  11. 11.
    Cao, X.-D., Cerenzia, M., Kazaras, D.: Harnack estimates for the endangered species equation. Proc. Am. Math. Soc. 143, 4537–4545 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cao, X.-D., Fayyazuddin Ljungberg, B., Liu, B.: Differential Harnack estimates for a nonlinear heat equation. J. Funct. Anal. 265, 2312–2330 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cao, X.-D., Liu, B., Pendleton, I., Ward, A.: Differential Harnack estimates for Fisher’s equation. Pac. J. Math. 290, 273–300 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cao, X.-D., Zhang, Z.: Differential Harnack estimates for parabolic equations. In: Proceedings of Complex and Differential Geometry, pp. 87-98 (2011)CrossRefGoogle Scholar
  15. 15.
    Case, J.: A Yamabe-type problem on smooth metric measure spaces. J. Differ. Geom. 101, 467–505 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cheng, S.-Y., Yau, S.-T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28, 333–354 (1975)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Chow, B., Hamilton, R.: Constrained and linear Harnack inqualities for parabolic equations. Invent. Math. 129, 213–238 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dung, N.-T., Khanh, N.-N., Ngo, Q.-A.: Gradient estimates for some \(f\)-heat equations driven by Lichnerowicz’s equation on complete smooth metric measure spaces. Manuscr. Math. 155, 471–501 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34, 525–598 (1981)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Guo, Z.-M., Wei, J.-C.: Hausdoff dimension of ruptures for solutions of a semilinear equation with singular nonlinearity. Manuscr. Math. 120, 193–209 (2006)CrossRefGoogle Scholar
  21. 21.
    Hamilton, R.: A matrix Harnack estimate for the heat equation. Commun. Anal. Geom. 1, 113–126 (1993)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hamilton, R.: The formation of singularities in the Ricci flow. Surv. Differ. Geom. 2, 7–136 (1995)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Jin, Z.-R.: A counterexample to the Yamabe problem for complete noncompact manifolds. In: Lecture Notes in Mathematics, vol. 1306, pp. 93–101 (1988)Google Scholar
  24. 24.
    Jin, Z.-R.: Prescribing scalar curvatures on the conformal classes of complete metrics with negative curvature. Trans. Am. Math. Soc. 340, 785–810 (1993)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lee, J., Parker, T.: The Yamabe problem. Bull. Am. Math. Soc. 17, 37–91 (1987)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li, J.-F., Xu, X.-J.: Differential Harnack inequalities on Riemannian manifolds I: linear heat equation. Adv. Math. 226(5), 4456–4491 (2011)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Li, J.-Y.: Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds. J. Funct. Anal. 100, 233–256 (1991)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Li, P., Tam, L.-F., Yang, D.-G.: On the elliptic equation \(\Delta u+ku-Ku^p=0\) on complete Riemannian manifolds and their geometric applications. Trans. Am. Math. Soc. 350, 1045–1078 (1998)CrossRefGoogle Scholar
  29. 29.
    Li, P., Yau, S.-T.: On the parabolic kernel of the Schrodinger operator. Acta Math. 156, 153–201 (1986)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Li, X.-D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pure. Appl. 84, 1295–1361 (2005)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Lott, J.: Some geometric properties of the Bakry–Émery–Ricci tensor. Comment. Math. Helv. 78, 865–883 (2003)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Lott, J.: Remark about scalar curvature and Riemannian submersions. Proc. Am. Math. Soc. 135, 3375–3381 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Mastrolia, P., Rigoli, M., Setti, A.G.: Yamabe-Type Equations on Complete, Noncompact Manifolds, Progress in Mathematics, vol. 302. Birkhäuser, Basel (2012)CrossRefGoogle Scholar
  34. 34.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications (2002). arXiv:math.DG/0211159v1
  35. 35.
    Ratto, A., Rigoli, M., Veron, L.: Scalar curvature and conformal deformations of noncompact Riemannian manifolds. Math. Z. 225, 395–426 (1997)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Schoen, R.: Conformal deformations of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Schoen, R.: A report on some recent progress on nonlinear problems in geometry. In: Blaine Lawson, H., Shing-Tung, Yau., (eds.) Surveys in differential geometry, vol.1 (Cambridge, Massachusetts, 1990), pp. 201–241, Lehigh University, Pennsylvania (1991)CrossRefGoogle Scholar
  38. 38.
    Souplet, P., Zhang, Q.S.: Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds. Bull. Lond. Math. Soc. 38, 1045–1053 (2006)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Trudinger, N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Sc. Norm. Super Pisa 22, 265–274 (1968)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Wei, G.-F., Wylie, W.: Comparison geometry for the Bakry–Émery Ricci tensor. J. Differ. Geom. 83, 377–405 (2009)CrossRefGoogle Scholar
  41. 41.
    Wu, J.-Y.: Li–Yau type estimates for a nonlinear parabolic equation on complete manifolds. J. Math. Anal. Appl. 369, 400–407 (2010)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Wu, J.-Y.: Elliptic gradient estimates for a weighted heat equation and applications. Math. Z. 280, 451–468 (2015)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Wu, J.-Y.: Elliptic gradient estimates for a nonlinear heat equation and applications. Nonlinear Anal. 151, 1–17 (2017)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Xu, X.-J.: Gradient estimates for the degenerate parabolic equation \(u_t=F(u)\) on manifolds and some Liouville-type theorems. J Differ. Equ. 252, 1403–1420 (2012)CrossRefGoogle Scholar
  45. 45.
    Yamabe, H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Yang, Y.-Y.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Proc. Am. Math. Soc. 136(11), 4095–4102 (2008)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Yang, Y.-Y.: Gradient estimates for the equation \(\Delta u+cu^{-\alpha }=0\) on Riemannian manifolds. Acta Math. Sin. (Engl. Ser.) 26, 1177–1182 (2010)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Yau, S.-T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Zhang, Q.S.: Positive solutions to \(\Delta u-Vu+Wu^p=0\) and its parabolic counterpart in noncompact manifolds. Pac. J. Math. 213, 163–200 (2004)CrossRefGoogle Scholar
  50. 50.
    Zhu, X.-B.: Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds. Nonlinear Anal. 74, 5141–5146 (2011)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Zhu, X.-B.: Gradient estimates and Liouville theorems for linear and nonlinear parabolic equations on Riemannian manifolds. Acta Math. Sci. 36B(2), 514–526 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Maritime UniversityShanghaiPeople’s Republic of China

Personalised recommendations