The degree of irrationality of hypersurfaces in various Fano varieties

  • David StapletonEmail author
  • Brooke Ullery


The purpose of this paper is to compute the degree of irrationality of hypersurfaces of sufficiently high degree in various Fano varieties: quadrics, Grassmannians, products of projective space, cubic threefolds, cubic fourfolds, and complete intersection threefolds of type (2,2). This extends the techniques of Bastianelli, De Poi, Ein, Lazarsfeld, and the second author who computed the degree of irrationality of hypersurfaces of sufficiently high degree in projective space. A theme in the paper is that the fibers of low degree rational maps from the hypersurfaces to projective space tend to lie on curves of low degree contained in the Fano varieties. This allows us to study these maps by studying the geometry of curves in these Fano varieties.

Mathematics Subject Classification

14E05 14N20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Bastianelli, F., Cortini, R., De Poi, P.: The gonality theorem of Noether for hypersurfaces. J. Algebraic Geom. 23(2), 313–339 (2014). MR 3166393MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bastianelli, F., Ciliberto, C., Flamini, F., Supino, P.: Gonality of curves on general hypersufaces (2017). arXiv preprint arXiv:1707.07252 (2017)
  3. 3.
    Beauville, A., Donagi, R.: La variété des droites d’une hypersurface cubique de dimension \(4\). C. R. Acad. Sci. Paris Sér. I Math. 301(14), 703–706 (1985)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bastianelli, F., De Poi, P., Ein, L., Lazarsfeld, R., Ullery, B.: Measures of irrationality for hypersurfaces of large degree (2015)Google Scholar
  5. 5.
    Clemens, C.H., Griffiths, P.A.: The intermediate Jacobian of the cubic threefold. Ann. Math. 95, 281–356 (1972). MR 0302652MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ein, L.: Subvarieties of generic complete intersections. Invent. Math. 94(1), 163–169 (1988). MR 958594MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gounelas, F., Kouvidakis, A.: Measures of irrationality of the fano surface of a cubic threefold (2017).
  8. 8.
    Hassett, B., Pirutka, A., Tschinkel, Y.: Stable rationality of quadric surface bundles over surfaces (2016).
  9. 9.
    Kontsevich, M., Tschinkel, Y.: Specialization of birational types (2017). arXiv:1708.05699
  10. 10.
    Narasimhan, M.S., Ramanan, S.: Moduli of vector bundles on a compact Riemann surface. Ann. Math. 89, 14–51 (1969). MR 0242185MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pirola, G.P.: Curves on generic Kummer varieties. Duke Math. J. 59(3), 701–708 (1989). MR 1046744MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Voisin, C.: On a conjecture of Clemens on rational curves on hypersurfaces. J. Differ. Geom. 44(1), 200–213 (1996). MR 1420353MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Voisin, C.: Chow rings and gonality of general abelian varieties. arXiv:1802.07153 (2018)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of California San DiegoSan DiegoUSA

Personalised recommendations