manuscripta mathematica

, Volume 156, Issue 1–2, pp 81–115 | Cite as

Unipotent monodromy and arithmetic \({\mathcal {D}}\)-modules

Article

Abstract

In the framework of Berthelot’s theory of arithmetic \({\mathcal {D}}\)-modules, we introduce the notion of arithmetic \({\mathcal {D}}\)-modules having potentially unipotent monodromy. For example, from Kedlaya’s semistable reduction theorem, the overconvergent isocrystals with Frobenius structure have potentially unipotent monodromy. We construct some coefficients stable under Grothendieck’s six operations, containing overconvergent isocrystals with Frobenius structure and whose objects have potentially unipotent monodromy. On the other hand, we introduce the notion of arithmetic \({\mathcal {D}}\)-modules having quasi-unipotent monodromy. These objects are overholonomic, contain the isocrystals having potentially unipotent monodromy and are stable under Grothendieck’s six operations and under base change.

Mathematics Subject Classification

14F10 14F30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, T.: Langlands correspondence for isocrystals and existence of crystalline companion for curves (2013). arXiv:1310.0528
  2. 2.
    Abe, T., Caro, D.: Theory of weights in \(p\)-adic cohomology (2013). arXiv:1303.0662
  3. 3.
    Berthelot, P.: \(\cal{D}\)-modules arithmétiques. I. Opérateurs différentiels de niveau fini. Ann. Sci. École Norm. Sup. (4) 29(2), 185–272 (1996)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Berthelot, P.: Introduction à la théorie arithmétique des \(\cal{D}\)-modules. Astérisque 279, 1–80 (2002). Cohomologies \(p\)-adiques et applications arithmétiques, IIGoogle Scholar
  5. 5.
    Caro, D.: \(\cal{D}\)-modules arithmétiques surcohérents. Application aux fonctions L. Ann. Inst. Fourier (Grenoble) 54(6), 1943–1996 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Caro, D.: Overconvergent F-isocrystals and differential overcoherence. Invent. Math. 170(3), 507–539 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Caro, D.: \(\cal{D}\)-modules arithmétiques surholonomes. Ann. Sci. École Norm. Sup. (4) 42(1), 141–192 (2009)CrossRefMATHGoogle Scholar
  8. 8.
    Caro, D.: Overconvergent log-isocrystals and holonomy. (Log-isocristaux surconvergents et holonomie). Compos. Math. 145(6), 1465–1503 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Caro, D.: Pleine fidélité sans structure de Frobenius et isocristaux partiellement surconvergents. Math. Ann. 349, 747–805 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Caro, D.: Sur la préservation de la cohérence par image inverse extraordinaire par une immersion fermée. Mathematics, ArXiv e-prints arXiv:1207.0714 (2012)
  11. 11.
    Caro, D.: Sur la préservation de la surconvergence par l’image directe d’un morphisme propre et lisse. Ann. Sci. Éc. Norm. Supér. (4) 48(1), 131–169 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Caro, D.: Sur la stabilité par produit tensoriel de complexes de \(\cal{D}\)-modules arithmétiques. Manuscr. Math. 147(1–2), 1–41 (2015)CrossRefMATHGoogle Scholar
  13. 13.
    Caro, D.: La surcohérence entraîne l’holonomie. Bull. Soc. Math. France 144(3), 429–475 (2016)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Caro, D.: Systéms inductifs cohérents de \(\cal{D}\)-modules arithmétiques logarithmiques, stabilité par opérations cohomologiques. Doc. Math. 21, 1515–1606 (2016)MathSciNetMATHGoogle Scholar
  15. 15.
    Caro, D., Tsuzuki, N.: Overholonomicity of overconvergent \(F\)-isocrystals over smooth varieties. Ann. Math. (2) 176(2), 747–813 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    de Jong, A.J.: Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math. 83, 51–93 (1996)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kedlaya, K.S.: Semistable reduction for overconvergent \(F\)-isocrystals. I. Unipotence and logarithmic extensions. Compos. Math. 143(5), 1164–1212 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kedlaya, K.S.: Semistable reduction for overconvergent \(F\)-isocrystals. II. A valuation-theoretic approach. Compos. Math. 144(3), 657–672 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kedlaya, K.S.: Semistable reduction for overconvergent \(F\)-isocrystals. III: local semistable reduction at monomial valuations. Compos. Math. 145(1), 143–172 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kedlaya, K.S.: Semistable reduction for overconvergent \(F\)-isocrystals, IV: local semistable reduction at nonmonomial valuations. Compos. Math. 147(2), 467–523 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Milne, J.S.: Étale Cohomology. Princeton University Press, Princeton (1980)MATHGoogle Scholar
  22. 22.
    Revêtements étales et groupe fondamental (SGA 1). Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 3. Société Mathématique de France, Paris, 2003. Séminaire de géométrie algébrique du Bois Marie 1960–1961. [Geometric Algebra Seminar of Bois Marie 1960–1961], Directed by A. Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin]Google Scholar
  23. 23.
    Shiho, A.: On logarithmic extension of overconvergent isocrystals. Math. Ann. 348(2), 467–512 (2010)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Virrion, A.: Trace et dualité relative pour les \(\cal{D}\)-modules arithmétiques. In: Adolphson, A., Baldassarri, F., Berthelot, P., Katz, N.M., Loeser, F. (eds.) Geometric Aspects of Dwork Theory, vol. I, II, pp. 1039–1112. Walter de Gruyter GmbH & Co. KG, Berlin (2004)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Universite de Caen NormandieCaenFrance

Personalised recommendations