Advertisement

IL-2 gene polymorphisms affect tacrolimus response in myasthenia gravis

  • Yang Shumei
  • Li Yi
  • Meng Huanyu
  • Li Zhibin
  • Jin Wanlin
  • Xu Liqun
  • Yang HuanEmail author
Pharmacogenetics
  • 12 Downloads

Abstract

Purpose

The IL-2 gene polymorphisms have been reported to be associated with the development of autoimmune disease. However, there are no published studies examining the influence of the IL-2 gene polymorphisms on the response of myasthenia gravis (MG) patients to tacrolimus (Tac). The goal of this study was to investigate the relationship between the polymorphisms of IL-2 and Tac response in MG patients.

Methods

Ninety-two MG patients treated with Tac were studied, including 57 Tac-effective patients and 35 Tac-ineffective patients. Then, we selected four single-nucleotide polymorphisms (SNPs: rs2069776, rs2069772, rs2069762, rs2069763) in the IL-2 gene. Next, we analyzed the distribution of genotypes, allelic frequencies of SNPs, and haplotype frequencies among polymorphisms in the two groups of patients.

Results

The distribution of the allelic frequency of the rs2069762 variant differed between the Tac-effective and Tac-ineffective patients (P = 0.02). Genotypes G/T and G/G of rs2069762 were differently distributed between the two groups when the wild genotype T/T was assigned as a reference (P < 0.001 for G/T; P = 0.003 for G/G). Patients with the TAGG haplotype tended to be Tac-ineffective (P < 0.001, OR: 0.15, 95% CI: 0.05–0.43).

Conclusion

Myasthenia gravis patients with the rs2069762 variant, rs2069762 G/T and G/G genotype, and TAGG haplotype for IL-2 tended to respond poorly to Tac treatment.

Keywords

rs2069762 variant G/T and G/G genotype of rs2069762 TAGG haplotype Tacrolimus Tacrolimus response Myasthenia gravis 

Notes

Acknowledgments

The authors acknowledge the support by the nurses affiliated to the Outpatient Clinic of the Department of Neurology in Xiangya Hospital.

Sources of funding

This study was financially supported by grants from the National Nature Science Foundation of China (grant numbers: 8177051973, 81571173 and 81501034).

Compliance with ethical standards

The study was approved by the Ethics Committee of the Xiangya Hospital of Central South, and all patients provided written informed consent. The certificate number is 201703107.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

228_2019_2642_MOESM1_ESM.xlsx (19 kb)
ESM 1 (XLSX 19 kb)

References

  1. 1.
    Carr AS, Cardwell CR, McCarron PO, McConville J (2010) A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol 10:46CrossRefGoogle Scholar
  2. 2.
    Andersen JB, Engeland A, Owe JF, Gilhus NE (2010) Myasthenia gravis requiring pyridostigmine treatment in a national population cohort. Eur J Neurol 17(12):1445–1450CrossRefGoogle Scholar
  3. 3.
    Heldal AT, Owe JF, Gilhus NE, Romi F (2009) Seropositive myasthenia gravis: a nationwide epidemiologic study. Neurology 73(2):150–151CrossRefGoogle Scholar
  4. 4.
    Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I, Kuntz N, Massey JM, Melms A, Murai H, Nicolle M, Palace J, Richman DP, Verschuuren J, Narayanaswami P (2016) International consensus guidance for management of myasthenia gravis: executive summary. Neurology 87(4):419–425CrossRefGoogle Scholar
  5. 5.
    Yoshikawa H, Kiuchi T, Saida T, Takamori M (2011) Randomised, double-blind, placebo-controlled study of tacrolimus in myasthenia gravis. J Neurol Neurosurg Psychiatry 82(9):970–977CrossRefGoogle Scholar
  6. 6.
    Chen D, Hou S, Zhao M, Sun X, Zhang H, Yang L (2018) Dose optimization of tacrolimus with therapeutic drug monitoring and CYP3A5 polymorphism in patients with myasthenia gravis. Eur J Neurol 25(8):1049–1049e80.  https://doi.org/10.1111/ene.13652 CrossRefGoogle Scholar
  7. 7.
    Kanai T, Uzawa A, Kawaguchi N, Himuro K, Oda F, Ozawa Y, Kuwabara S (2017) Adequate tacrolimus concentration for myasthenia gravis treatment. Eur J Neurol 24(2):270–275CrossRefGoogle Scholar
  8. 8.
    Clipstone NA, Fiorentino DF, Crabtree GR (1994) Molecular analysis of the interaction of calcineurin with drug-immunophilin complexes. J Biol Chem 269(42):26431–26437Google Scholar
  9. 9.
    Chow CW, Rincón M, Davis RJ (1999) Requirement for transcription factor NFAT in interleukin-2 expression. Mol Cell Biol 19(3):2300–2307CrossRefGoogle Scholar
  10. 10.
    Kapturczak MH, Meier-Kriesche HU, Kaplan B (2004) Pharmacology of calcineurin antagonists. Transplant Proc 36(2 Suppl):25S–32S.  https://doi.org/10.1016/j.transproceed.2004.01.018 CrossRefGoogle Scholar
  11. 11.
    Matesanz F, Fedetz M, Leyva L, Delgado C, Fernández O, Alcina A (2004) Effects of the multiple sclerosis associated -330 promoter polymorphism in IL2 allelic expression. J Neuroimmunol 148(1–2):212–217.  https://doi.org/10.1016/j.jneuroim.2003.12.001 CrossRefGoogle Scholar
  12. 12.
    Zhou J, Wang L, Wang F, Xu P, Li Y, Bai B, Dang L, Sun D (2015) 4q27 as a psoriasis susceptibility locus in the Northeastern Chinese Han population. Tissue Antigens 85(1):15–19.  https://doi.org/10.1111/tan.12471 CrossRefGoogle Scholar
  13. 13.
    Zhang X, Lin S, Yang Y, Rong L, He G, He H, Xue Y, Fang Y, Wang Y (2017) Interleukin-2 and Interleukin-8 gene polymorphisms and acquired aplastic anemia risk in a Chinese population. Cell Physiol Biochem 41(3):1199–1207.  https://doi.org/10.1159/000464381 CrossRefGoogle Scholar
  14. 14.
    Jaretzki A et al (2000) Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Ann Thorac Surg 70(1):327–334CrossRefGoogle Scholar
  15. 15.
    Ponseti JM, Gamez J, Azem J, López-Cano M, Vilallonga R, Armengol M (2008) Tacrolimus for myasthenia gravis: a clinical study of 212 patients. Ann N Y Acad Sci 1132:254–263.  https://doi.org/10.1196/annals.1405.000 CrossRefGoogle Scholar
  16. 16.
    Meng HY, Luo ZH, Hu B, Jin WL, Yan CK, Li ZB, Xue YY, Liu Y, Luo YE, Xu LQ, Yang H (2018) SNPs affecting the clinical outcomes of regularly used immunosuppressants. Pharmacogenomics 19(5):495–511.  https://doi.org/10.2217/pgs-2017-0182 CrossRefGoogle Scholar
  17. 17.
    Favis R, Day JP, Gerry NP, Phelan C, Narod S, Barany F (2000) Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2. Nat Biotechnol 18(5):561–564.  https://doi.org/10.1038/75452 CrossRefGoogle Scholar
  18. 18.
    Xiao Z, Xiao J, Jiang Y, Zhang S, Yu M, Zhao J, Wei D, Cao H (2006) A novel method based on ligase detection reaction for low abundant YIDD mutants detection in hepatitis B virus. Hepatol Res 34(3):150–155.  https://doi.org/10.1016/j.hepres.2005.12.007 CrossRefGoogle Scholar
  19. 19.
    Zhang Z, Xu G, Cai B, Zhang H, Zhu W, Liu X (2017) Genetic variants in microRNAs predict recurrence of ischemic stroke. Mol Neurobiol 54(4):2776–2780CrossRefGoogle Scholar
  20. 20.
    Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265CrossRefGoogle Scholar
  21. 21.
    Tron C, Lemaitre F, Verstuyft C, Petitcollin A, Verdier MC, Bellissant E (2018) Pharmacogenetics of membrane transporters of tacrolimus in solid organ transplantation. Clin Pharmacokinet.  https://doi.org/10.1007/s40262-018-0717-7
  22. 22.
    Mok CC (2017) Calcineurin inhibitors in systemic lupus erythematosus. Best Pract Res Clin Rheumatol 31(3):429–438.  https://doi.org/10.1016/j.berh.2017.09.010 CrossRefGoogle Scholar
  23. 23.
    Gotterer L, Li Y (2016) Maintenance immunosuppression in myasthenia gravis. J Neurol Sci 369:294–302.  https://doi.org/10.1016/j.jns.2016.08.057 CrossRefGoogle Scholar
  24. 24.
    Bergmann TK, Barraclough KA, Lee KJ, Staatz CE (2012) Clinical pharmacokinetics and pharmacodynamics of prednisolone and prednisone in solid organ transplantation. Clin Pharmacokinet 51(11):711–741.  https://doi.org/10.1007/s40262-012-0007-8 CrossRefGoogle Scholar
  25. 25.
    Bouzid D, Fourati H, Amouri A, Marques I, Abida O, Tahri N, Penha-Gonçalves C, Masmoudi H (2014) Autoimmune diseases association study with the KIAA1109-IL2-IL21 region in a Tunisian population. Mol Biol Rep 41(11):7133–7139.  https://doi.org/10.1007/s11033-014-3596-5 CrossRefGoogle Scholar
  26. 26.
    Chistiakov DA, Voronova NV, Chistiakov PA (2008) The crucial role of IL-2/IL-2RA-mediated immune regulation in the pathogenesis of type 1 diabetes, an evidence coming from genetic and animal model studies. Immunol Lett 118(1):1–5.  https://doi.org/10.1016/j.imlet.2008.03.002 CrossRefGoogle Scholar
  27. 27.
    Bremer S, Vethe NT, Skauby M, Kasbo M, Johansson ED, Midtvedt K, Bergan S (2017) NFAT-regulated cytokine gene expression during tacrolimus therapy early after renal transplantation. Br J Clin Pharmacol 83(11):2494–2502.  https://doi.org/10.1111/bcp.13367 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations