Advertisement

Population pharmacokinetic modeling of sustained release lithium in the serum, erythrocytes and urine of patients with bipolar disorder

  • C. CouffignalEmail author
  • J. Bertrand
  • S. Sportiche
  • Marine Jarroir
  • S. El Balkhi
  • N. Djebrani-Oussedik
  • J. Poupon
  • X. Declèves
  • F. Mentré
  • F. Bellivier
Pharmacokinetics and Disposition

Abstract

Purpose

Lithium (Li), the first-line treatment of bipolar disorder, was first developed as an immediate-release form with a routine therapeutic drug monitoring 12 h after the last dose. In Europe, the most commonly prescribed form is a sustained release (srLi). Yet no pharmacokinetics (PK) study has been published of srLi, administered once a day, in adults. The present study describes srLi PK in the serum and erythrocytes of bipolar patients.

Methods

To assess srLi PK, we studied prospectively 17 French bipolar patients on a median dose of 1000 mg (600–1600) for at least 2 years. Serum (S), erythrocyte (E) concentrations, and urinary (U) amount were collected over 8 h after 15 days of morning intake using monitoring electronic medical system (MEMs). Population PK parameters were estimated using the SAEM algorithm (MONOLIX 4.3.3 software).

Results

Using a population approach, we built a PK population model of srLi including one S compartment (VS = 23.0 L, ClS = 1.21 L h−1), one E compartment (VE = 64.7 L, ClSE = 3.63 L h−1, ClES = 9.46 L h−1), and one U compartment (F = 0.62) and estimate the ratio of concentrations to Li in E over S at 0.38 with 27% between-subject variability.

Conclusion

This is a PK model of srLi once a day in bipolar patients using a population approach simultaneously describing Li concentrations in serum, erythrocytes, and urine which provide an estimate of the ratio of concentration in erythrocyte over serum and its between-subject variability (BSV).

Keywords

Lithium Pharmacokinetics Bipolar disorder Sustained release 

Notes

Acknowledgements

Part of the content of this work was presented at Population Approach Group of Europe Meeting, held in Budapest 2017.

Author contributions

Wrote manuscript: CC, JB, XD, FM, FB.

Designed research: FM, FB, SS, XD, CC.

Performed research: FB, SS, MJ.

Analyzed data: CC, FM, JB.

Contributed analytical tools: SE, JP, NDO.

Funding information

This study was supported by a grant from Ministry of research of France (PRES 2013).

Compliance with ethical standards

The study was conducted in accordance with good clinical practice and was approved by the ethics committee (IRB CPP IDF VI 2008-A01465-50). All patients or their legal representative signed an informed consent form for GAN and the ancillary pharmacokinetic study. Clinical Trial Registration of GAN study: http://www.clinicaltrials.gov; unique identifier: NCT02627404.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

228_2018_2605_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1865 kb)

References

  1. 1.
    Gore FM, Bloem PJN, Patton GC, Ferguson J, Joseph V, Coffey C, Sawyer SM, Mathers CD (2011) Global burden of disease in young people aged 10-24 years: a systematic analysis. Lancet 377(9783):2093–2102CrossRefGoogle Scholar
  2. 2.
    Collins PY, Patel V, Joestl SS, March D, Insel TR, Daar AS, Scientific Advisory Board and the Executive Committee of the Grand Challenges on Global Mental Health, Anderson W, Dhansay MA, Phillips A, Shurin S, Walport M, Ewart W, Savill SJ, Bordin IA, Costello EJ, Durkin M, Fairburn C, Glass RI, Hall W, Huang Y, Hyman SE, Jamison K, Kaaya S, Kapur S, Kleinman A, Ogunniyi A, Otero-Ojeda A, Poo MM, Ravindranath V, Sahakian BJ, Saxena S, Singer PA, Stein DJ (2011) Grand challenges in global mental health. Nature 475(7354):27–30CrossRefGoogle Scholar
  3. 3.
    Price LH, Heninger GR (1994) Lithium in the treatment of mood disorders. N Engl J Med 331(9):591–598CrossRefGoogle Scholar
  4. 4.
    Maj M, Pirozzi R, Magliano L (1995) Nonresponse to reinstituted lithium prophylaxis in previously responsive bipolar patients: prevalence and predictors. Am J Psychiatry 152(12):1810–1811CrossRefGoogle Scholar
  5. 5.
    Bellivier F, Belzeaux R, Scott J, Courtet P, Golmard J-L, Azorin J-M (2017) Anticonvulsants and suicide attempts in bipolar I disorders. Acta Psychiatr Scand 135(5):470–478CrossRefGoogle Scholar
  6. 6.
    Malhi GS, Tanious M (2011) Optimal frequency of lithium administration in the treatment of bipolar disorder: clinical and dosing considerations. CNS Drugs 25(4):289–298CrossRefGoogle Scholar
  7. 7.
    Yatham LN, Kennedy SH, Parikh SV, Schaffer A, Beaulieu S, Alda M, O'Donovan C, Macqueen G, McIntyre R, Sharma V, Ravindran A, Young LT, Milev R, Bond DJ, Frey BN, Goldstein BI, Lafer B, Birmaher B, Ha K, Nolen WA, Berk M (2013) Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2013. Bipolar Disord 15(1):1–44CrossRefGoogle Scholar
  8. 8.
    Thornhill DP (1986) Serum levels and pharmacokinetics of ordinary and sustained-release lithium carbonate in manic patients during chronic dosage. Int J Clin Pharmacol Ther Toxicol 24(5):257–261PubMedGoogle Scholar
  9. 9.
    Amdisen A (1977) Serum level monitoring and clinical pharmacokinetics of lithium. Clin Pharmacokinet 2(2):73–92CrossRefGoogle Scholar
  10. 10.
    Cooper TB, Simpson GM, Lee JH, Bergner PE (1978) Evaluation of a slow-release lithium carbonate formulation. Am J Psychiatry 135(8):917–922CrossRefGoogle Scholar
  11. 11.
    Sproule B (2002) Lithium in bipolar disorder: can drug concentrations predict therapeutic effect? Clin Pharmacokinet 41(9):639–660CrossRefGoogle Scholar
  12. 12.
    Résumé des Caractéristiques du Produit [Internet]. [cited 2017 Jun 29]. Available from: http://agence-prd.ansm.sante.fr/php/ecodex/rcp/R0121511.htm
  13. 13.
    Sproule BA, Hardy BG, Shulman KI (2000) Differential pharmacokinetics of lithium in elderly patients. Drugs Aging 16(3):165–177CrossRefGoogle Scholar
  14. 14.
    Grandjean EM, Aubry J-M (2009) Lithium: updated human knowledge using an evidence-based approach. Part II: clinical pharmacology and therapeutic monitoring. CNS Drugs 23(4):331–349CrossRefGoogle Scholar
  15. 15.
    Couffignal C, Chevillard L, Balkhi SE, Cisternino S, Declèves X (2017) The pharmacokinetics of lithium. In: Malhi GS, Masson M, Bellivier F, editors. The science and practice of lithium therapy [Internet]. Springer International Publishing [cited 2017 Apr 28]. p. 25–53. Available from: http://link.springer.com/chapter/10.1007/978-3-319-45923-3_2
  16. 16.
    Frye MA, Kimbrell TA, Dunn RT, Piscitelli S, Grothe D, Vanderham E, Cora-Locatelli G, Post RM, Ketter TA (1998) Gabapentin does not alter single-dose lithium pharmacokinetics. J Clin Psychopharmacol 18(6):461–464CrossRefGoogle Scholar
  17. 17.
    Lee CF, Yang YY, Hu OY (1998) Single dose pharmacokinetic study of lithium in Taiwanese/Chinese bipolar patients. Aust N Z J Psychiatry 32(1):133–136CrossRefGoogle Scholar
  18. 18.
    Thornhill DP (1978) Pharmacokinetics of ordinary and sustained-release lithium carbonate in manic patients after acute dosage. Eur J Clin Pharmacol 14(4):267–271CrossRefGoogle Scholar
  19. 19.
    Ward ME, Musa MN, Bailey L (1994) Clinical pharmacokinetics of lithium. J Clin Pharmacol 34(4):280–285CrossRefGoogle Scholar
  20. 20.
    Taright N, Mentré F, Mallet A, Jouvent R (1994) Nonparametric estimation of population characteristics of the kinetics of lithium from observational and experimental data: individualization of chronic dosing regimen using a new Bayesian approach. Ther Drug Monit 16(3):258–269CrossRefGoogle Scholar
  21. 21.
    Valecha N, Tayal G, Tripathi KD (1990) Single dose pharmacokinetics of lithium & prediction of maintenance dose in manic depressive patients. Indian J Med Res 92:409–416PubMedGoogle Scholar
  22. 22.
    Yang YY, Yeh EK, Chang SS, Deng HC, Lee CF (1991) Maintenance lithium levels could be lowered: based on Taiwanese and Danish studies. J Formos Med Assoc 90(5):509–513PubMedGoogle Scholar
  23. 23.
    Yukawa E, Nomiyama N, Higuchi S, Aoyama T (1993) Lithium population pharmacokinetics from routine clinical data: role of patient characteristics for estimating dosing regimens. Ther Drug Monit 15(2):75–82CrossRefGoogle Scholar
  24. 24.
    Methaneethorn J (2018) Population pharmacokinetic analyses of lithium: a systematic review. Eur J Drug Metab Pharmacokinet 43(1):25–34CrossRefGoogle Scholar
  25. 25.
    ElDesoky ES, Kumar V, Alorainy MS, Hamdi MM, Derendorf H (2008) Estimation of lithium clearance from routine clinical data in Egyptian bipolar patients. A population pharmacokinetic approach. Int J Clin Pharmacol Ther 46(12):617–626CrossRefGoogle Scholar
  26. 26.
    Hoegberg LCG, Jürgens G, Zederkof VW, Holgersson B, Andersson JE, Dalhoff KP, Larsen EB, Angelo HR (2012) A computerised sampling strategy for therapeutic drug monitoring of lithium provides precise estimates and significantly reduces dose-finding time. Basic Clin Pharmacol Toxicol 110(3):259–263CrossRefGoogle Scholar
  27. 27.
    Ferron G, Debray M, Buneaux F, Baud FJ, Scherrmann JM (1995) Pharmacokinetics of lithium in plasma and red blood cells in acute and chronic intoxicated patients. Int J Clin Pharmacol Ther 33(6):351–355PubMedGoogle Scholar
  28. 28.
    Rybakowski J, Lehmann W, Kanarkowski R (1988) Erythrocyte lithium–sodium countertransport and total body lithium pharmacokinetics in patients with affective illness. Hum Psychopharmacol Clin Exp 3(2):87–93CrossRefGoogle Scholar
  29. 29.
    Lee CR, Hill SE, Dimitrakoudi M, Jenner FA, Pollitt RJ (1975) The relationship of plasma to erythrocyte lithium levels in patients taking lithium carbonate. Br J Psychiatry 127:596–598CrossRefGoogle Scholar
  30. 30.
    White K, Cohen J, Boyd J, Nelson R (1979) Relationship between plasma, RBC, and CSF lithium concentrations in human subjects. Int Pharmacopsychiatry 14(4):185–189CrossRefGoogle Scholar
  31. 31.
    Schreiner HC, Dunner DL, Meltzer HL, Fieve RR (1979) The relationship of the lithium erythrocyte: plasma ratio to plasma lithium level. Biol Psychiatry 14(1):207–213PubMedGoogle Scholar
  32. 32.
    Vrijens B, Goetghebeur E (1999) The impact of compliance in pharmacokinetic studies. Stat Methods Med Res 8(3):247–262CrossRefGoogle Scholar
  33. 33.
    Boudebesse C, Geoffroy PA, Bellivier F, Henry C, Folkard S, Leboyer M, Etain B (2014) Correlations between objective and subjective sleep and circadian markers in remitted patients with bipolar disorder. Chronobiol Int 31(5):698–704CrossRefGoogle Scholar
  34. 34.
    Grof P, Duffy A, Cavazzoni P, Grof E, Garnham J, MacDougall M, O’Donovan C, Alda M (2002) Is response to prophylactic lithium a familial trait? J Clin Psychiatry 63(10):942–947CrossRefGoogle Scholar
  35. 35.
    Kuhn E, Lavielle M (2005) Maximum likelihood estimation in nonlinear mixed effects models. Comput Stat Data Anal 49(4):1020–1038CrossRefGoogle Scholar
  36. 36.
    Yoshida K, Uchida H, Suzuki T, Watanabe M, Yoshino N, Houchi H, Mimura M, Fukuoka N (2018) Prediction model of serum lithium concentrations. Pharmacopsychiatry 51(3):82–88CrossRefGoogle Scholar
  37. 37.
    Valle M, Barbanoj MJ, Donner A, Izquierdo I, Herranz U, Klein N, Eichler HG, Müller M, Brunner M (2005) Access of HTB, main metabolite of triflusal, to cerebrospinal fluid in healthy volunteers. Eur J Clin Pharmacol 61(2):103–111CrossRefGoogle Scholar
  38. 38.
    Nguyen T, Mouksassi M-S, Holford N, Al-Huniti N, Freedman I, Hooker AC et al (2016) Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacometrics Syst PharmacolGoogle Scholar
  39. 39.
    Savic RM, Karlsson MO (2009) Importance of shrinkage in empirical Bayes estimates for diagnostics: problems and solutions. AAPS J 11(3):558–569CrossRefGoogle Scholar
  40. 40.
    Dosne A-G, Niebecker R, Karlsson MO (2016) dOFV distributions: a new diagnostic for the adequacy of parameter uncertainty in nonlinear mixed-effects models applied to the bootstrap. J Pharmacokinet Pharmacodyn 43(6):597–608CrossRefGoogle Scholar
  41. 41.
    Hunter R (1988) Steady-state pharmacokinetics of lithium carbonate in healthy subjects. Br J Clin Pharmacol 25(3):375–380CrossRefGoogle Scholar
  42. 42.
    Johnson GFS, Hunt GE (1984) Pharmacokinetics of lithium preparations in patients. Prog Neuro-Psychopharmacol Biol Psychiatry 8(1):63–70CrossRefGoogle Scholar
  43. 43.
    Camus M, Henneré G, Baron G, Peytavin G, Massias L, Mentré F et al (2003) Comparison of lithium concentrations in red blood cells and plasma in samples collected for TDM, acute toxicity, or acute-on-chronic toxicity. Eur J Clin Pharmacol 59(8–9):583–587CrossRefGoogle Scholar
  44. 44.
    Swann AC, Berman N, Frazer A, Koslow SH, Maas JW, Pandey GN, Secunda S (1990) Lithium distribution in mania: single-dose pharmacokinetics and sympathoadrenal function. Psychiatry Res 32(1):71–84CrossRefGoogle Scholar
  45. 45.
    Wood AJ, Aronson JK, Bunch C, Grahame-Smith DG (1989) A study of the transport of lithium across the erythrocyte membrane in vivo and of the effects of the ion transport inhibitors digoxin and dipyridamole. Br J Clin Pharmacol 27(6):749–756CrossRefGoogle Scholar
  46. 46.
    Lauritsen BJ, Mellerup ET, Plenge P, Rasmussen S, Vestergaard P, Schou M (1981) Serum lithium concentrations around the clock with different treatment regimens and the diurnal variation of the renal lithium clearance. Acta Psychiatr Scand 64(4):314–319CrossRefGoogle Scholar
  47. 47.
    Murphy JE (2011) Clinical pharmacokinetics. ASHP, 433 pGoogle Scholar
  48. 48.
    Ljubicic D, Letica-Crepulja M, Vitezic D, Bistrovic IL, Ljubicic R (2008) Lithium treatments: single and multiple daily dosing. Can J Psychiatr 53(5):323–331CrossRefGoogle Scholar
  49. 49.
    Tomalik-Scharte D, Suleiman AA, Frechen S, Kraus D, Kerkweg U, Rokitta D, di Gion P, Queckenberg C, Fuhr U (2014) Population pharmacokinetic analysis of circadian rhythms in hepatic CYP3A activity using midazolam. J Clin Pharmacol 54(10):1162–1169CrossRefGoogle Scholar
  50. 50.
    Bienczak A, Cook A, Wiesner L, Mulenga V, Kityo C, Kekitiinwa A, Walker AS, Owen A, Gibb DM, Burger D, McIlleron H, Denti P (2017) Effect of diurnal variation, CYP2B6 genotype and age on the pharmacokinetics of nevirapine in African children. J Antimicrob Chemother 72(1):190–199CrossRefGoogle Scholar
  51. 51.
    Kervezee L, Stevens J, Birkhoff W, Kamerling IMC, de Boer T, Dröge M, Meijer JH, Burggraaf J (2016) Identifying 24 h variation in the pharmacokinetics of levofloxacin: a population pharmacokinetic approach. Br J Clin Pharmacol 81(2):256–268CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • C. Couffignal
    • 1
    • 2
    • 3
    Email author return OK on get
  • J. Bertrand
    • 2
    • 3
  • S. Sportiche
    • 4
    • 5
    • 6
  • Marine Jarroir
    • 4
    • 5
    • 6
  • S. El Balkhi
    • 7
  • N. Djebrani-Oussedik
    • 8
  • J. Poupon
    • 8
  • X. Declèves
    • 6
    • 9
    • 10
  • F. Mentré
    • 1
    • 2
    • 3
  • F. Bellivier
    • 4
    • 5
    • 6
  1. 1.Département de BiostatistiqueAP-HP, HUPNVSParis Cedex 18France
  2. 2.UMR 1137Université Paris Diderot, IAMEParisFrance
  3. 3.UMR 1137INSERM, IAMEParisFrance
  4. 4.Département de Psychiatrie et de Médecine AddictologiqueAP-HP, HUSLS-LRB-FWDParisFrance
  5. 5.Université Paris DiderotParisFrance
  6. 6.UMR-S1144INSERMParisFrance
  7. 7.Service de Pharmacologie – Toxicologie et PharmacovigilanceCHU LimogesLimogesFrance
  8. 8.Département de Pharmacologie-toxicologieAP-HP, HUSLS-LRB-FWDParisFrance
  9. 9.Département Biologie du Médicament et ToxicologieAPHP, HUPCParisFrance
  10. 10.UMR-S1144Université Paris DescartesParisFrance

Personalised recommendations