Advertisement

Role of metformin in overweight and obese people without diabetes: a systematic review and network meta-analysis

  • Fuhai Hui
  • Yingshi Zhang
  • Tianshu Ren
  • Xiang Li
  • Mingyi Zhao
  • Qingchun Zhao
Review

Abstract

Purpose

Our aim was to assess the efficacy of metformin for weight loss in overweight and obese people through a systematic review and network meta-analysis and to identify the most suitable dosage and intervention period for using metformin in adolescents and adults.

Methods

We searched databases for studies published by April 2018. A total of 34 trials (44 analyses) involving 8461 participants and 16 intervention arms were eligible. The study was registered with PROSPERO International prospective register of systematic reviews (CRD42017081053).

Results

Metformin was found to significantly decrease body mass index percentile (BMI) and had a tendency to decrease BMI (kg/m2) and weight (kg). Significant efficacy was observed in many subgroups. The metaregression may have identified the causes of heterogeneity as metformin dosage, control type, and intervention period. Network meta-analysis revealed that in adolescents, intervention with 2000 mg/day metformin ranked better than other interventions; however, 1000 mg/day metformin for 3 months may be most suitable for adolescents. For adults, metformin at doses of 3000 and 1000 mg/day ranked the highest, other than minimeal and lifestyle interventions; moreover, intervention with 3000 mg/day for 6 months and 1000 mg/day for 0.5 months may be suitable for adults.

Conclusion

When considering the efficacy of interventions for losing weight, metformin offers clear advantages for overweight and obese populations.

Keywords

Metformin Obesity Adolescent Adults Network meta-analysis 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

228_2018_2593_MOESM1_ESM.doc (18 kb)
Supplementary Table S1 (DOC 18 kb)
228_2018_2593_MOESM2_ESM.doc (120 kb)
Supplementary Table S2 (DOC 120 kb)
228_2018_2593_MOESM3_ESM.doc (83 kb)
Supplementary Table S3 (DOC 83 kb)
228_2018_2593_Fig5_ESM.png (188 kb)
Fig. S1

Study selection for systematic review and network meta-analysis (PNG 187 kb)

228_2018_2593_MOESM4_ESM.tif (1.4 mb)
High-resolution image (TIF 1404 kb)
228_2018_2593_Fig6_ESM.png (1.2 mb)
Fig. S2

Overall efficacy of metformin vs control on body mass index (BMI) (kg/m2) change. (PNG 1239 kb)

228_2018_2593_MOESM5_ESM.tif (7.6 mb)
High-resolution image (TIF 7778 kb)
228_2018_2593_Fig7_ESM.png (291 kb)
Fig. S3

Overall efficacy of metformin vs control on body mass index (BMI) (percentile) change (PNG 290 kb)

228_2018_2593_MOESM6_ESM.tif (2.9 mb)
High-resolution image (TIF 3012 kb)
228_2018_2593_Fig8_ESM.png (1.2 mb)
Fig. S4

Overall efficacy of metformin vs control on weight (kg) change (PNG 1185 kb)

228_2018_2593_MOESM7_ESM.tif (7.3 mb)
High-resolution image (TIF 7433 kb)
228_2018_2593_Fig9_ESM.png (160 kb)
Fig. S5

Network of eligible comparisons for body mass index (BMI) (kg/m2) in overweight adolescents (PNG 160 kb)

228_2018_2593_MOESM8_ESM.tif (2.5 mb)
High-resolution image (TIF 2521 kb)
228_2018_2593_Fig10_ESM.png (281 kb)
Fig. S6

Network meta-analysis of body mass index (BMI) (kg/m2) in overweight adolescents. Interventions are reported in decreasing order of efficacy for BMI (kg/m2) according to surface under the cumulative ranking curve (SUCRA). Comparisons between interventions should be read from right to left. For efficacy of intervention, standard mean difference (SMD) < 0 indicates favorable efficacy of the indicated intervention compared with the other interventions (PNG 281 kb)

228_2018_2593_MOESM9_ESM.tif (3.5 mb)
High-resolution image (TIF 3556 kb)
228_2018_2593_Fig11_ESM.png (118 kb)
Fig. S7

Network inconsistency when checking weight change in overweight adults (PNG 118 kb)

228_2018_2593_MOESM10_ESM.tif (1 mb)
High-resolution image (TIF 1071 kb)
228_2018_2593_Fig12_ESM.png (116 kb)
Fig. S8

Network funnel plot of weight change in overweight adults (PNG 116 kb)

228_2018_2593_MOESM11_ESM.tif (970 kb)
High-resolution image (TIF 969 kb)
228_2018_2593_MOESM12_ESM.doc (66 kb)
ESM 1 (DOC 65 kb)
228_2018_2593_MOESM13_ESM.doc (49 kb)
ESM 2 (DOC 48 kb)

References

  1. 1.
    Singh GK, Siahpush M, Hiatt RA, Timsina LR (2001) Dramatic increases in obesity and overweight prevalence and body mass index among ethnic-immigrant and social class groups in the United States, 1976–2008. J Community Health 36:94–110CrossRefGoogle Scholar
  2. 2.
    Reinehr T, de Sousa G, Toschke AM, Andler W (2006) Long-term follow-up of cardiovascular disease risk factors in children after an obesity intervention. Am J Clin Nutr 84:490–496CrossRefGoogle Scholar
  3. 3.
    Neuhouser ML, Aragaki AK, Prentice RL, Manson JE, Chlebowski R, Carty CL, Ochs-Balcom HM, Thomson CA, Caan BJ, Tinker LF, Urrutia RP, Knudtson J, Anderson GL (2015) Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the women’s health initiative randomized clinical trials. JAMA Oncology 1:611–621CrossRefPubMedGoogle Scholar
  4. 4.
    Lakoski SG, Cushman M, Siscovick DS, Blumenthal RS, Palmas W, Burke G, Herrington DM (2011) The relationship between inflammation, obesity and risk for hypertension in the multi-ethnic study of atherosclerosis (MESA). J Hum Hypertens 25:73CrossRefGoogle Scholar
  5. 5.
    Mathieu P, Poirier P, Pibarot P, Lemieux I, Després JP (2009) Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension 53:577–584CrossRefGoogle Scholar
  6. 6.
    Summerbell CD, Ashton V, Campbell KJ, Edmunds L, Kelly S, Waters E (2003) Interventions for treating obesity in children. Cochrane Database Syst Rev 3:CD001872Google Scholar
  7. 7.
    Straznicky N, Grassi G, Esler M, Lambert G, Dixon J, Lambert E, Jordan J, Schlaich M, European Society of Hypertension Working Group on Obesity (2010) European society of hypertension working group on obesity antihypertensive effects of weight loss: myth or reality? J Hypertens 28:637–643CrossRefGoogle Scholar
  8. 8.
    Aucott L, Rothnie H, McIntyre L, Thapa M, Waweru C, Gray D (2009) Long-term weight loss from lifestyle intervention benefits blood pressure?: a systematic review. Hypertension 54:756–762CrossRefGoogle Scholar
  9. 9.
    Markowicz-Piasecka M, Sikora J, Szydłowska A, Skupień A, Mikiciuk-Olasik E, Huttunen KM (2017) Metformin–a future therapy for neurodegenerative diseases. Pharm Res 34:2614–2627CrossRefPubMedGoogle Scholar
  10. 10.
    Jin HE, Hong SS, Choi MK, Maeng HJ, Kim DD, Chung SJ, Shim CK (2009) Reduced antidiabetic effect of metformin and down-regulation of hepatic Oct1 in rats with ethynylestradiol-induced cholestasis. Pharm Res 26:549–559CrossRefGoogle Scholar
  11. 11.
    Zordoky BN, Bark D, Soltys CL, Sung MM, Dyck JR (2014) The anti-proliferative effect of metformin in triple-negative MDA-MB-231 breast cancer cells is highly dependent on glucose concentration: implications for cancer therapy and prevention. Biochim Biophys Acta Gen Subj 1840:1943–1957CrossRefGoogle Scholar
  12. 12.
    August GP, Caprio S, Fennoy I, Freemark M, Kaufman FR, Lustig RH, Silverstein JH, Speiser PW, Styne DM, Montori VM (2008) Prevention and treatment of pediatric obesity: an endocrine society clinical practice guideline based on expert opinion. J Clin Endocrinol Metab 93:4576–4599CrossRefPubMedGoogle Scholar
  13. 13.
    Kirpichnikov D, McFarlane SI, Sowers JR (2002) Metformin: an update. Ann Intern Med 137:25–33CrossRefGoogle Scholar
  14. 14.
    Caprio S (2008) Treatment of impaired glucose tolerance in childhood. Nat Clin Pract Endocrinol Metab 4:320–321CrossRefGoogle Scholar
  15. 15.
    Hearnshaw C, Matyka K (2010) Managing childhood obesity: when lifestyle change is not enough. Diabetes Obes Metab 12:947–957CrossRefGoogle Scholar
  16. 16.
    Salanti G (2012) Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods 3:80–97CrossRefGoogle Scholar
  17. 17.
    Levri KM, Slaymaker E, Last A, Yeh J, Ference J, D’Amico F, Wilson SA (2005) Metformin as treatment for overweight and obese adults: a systematic review. Ann Fam Med 3:457–461CrossRefPubMedGoogle Scholar
  18. 18.
    Park MH, Kinra S, Ward KJ, White B, Viner RM (2009) Metformin for obesity in children and adolescents: a systematic review. Diabetes Care 32:1743–1745CrossRefPubMedGoogle Scholar
  19. 19.
    Björkhem-Bergman L, Asplund AB, Lindh JD (2011) Metformin for weight reduction in non-diabetic patients on antipsychotic drugs: a systematic review and meta-analysis. J Psychopharmacol 25:299–305CrossRefGoogle Scholar
  20. 20.
    McDonagh MS, Selph S, Ozpinar A, Foley C (2014) Systematic review of the benefits and risks of metformin in treating obesity in children aged 18 years and younger. JAMA Pediatr 168:178–184CrossRefGoogle Scholar
  21. 21.
    Bouza C, López-Cuadrado T, Gutierrez-Torres LF, Amate J (2012) Efficacy and safety of metformin for treatment of overweight and obesity in adolescents: an updated systematic review and meta-analysis. Obes Facts 5:753–765CrossRefGoogle Scholar
  22. 22.
    PROSPERO, Centre for Reviews and Dissemination (2009) Systematic reviews: CRD’s guidance for undertaking reviews in health care (internet). University of York, York. (http://www.cdr.york.ac.uk/prospero)
  23. 23.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097CrossRefPubMedGoogle Scholar
  24. 24.
    Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catalá-López F, Gøtzsche PC, Dickersin K, Boutron I, Altman DG, Moher D (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162:777–784CrossRefGoogle Scholar
  25. 25.
    Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions, vol 4. Wiley, HobokenGoogle Scholar
  26. 26.
    Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 8:3713–3721Google Scholar
  27. 27.
    Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades AE (2013) Evidence synthesis for decision making 4: inconsistency in networks of evidence based on randomized controlled trials. Med Decis Mak 33:641–656CrossRefGoogle Scholar
  28. 28.
    Mills EJ, Thorlund K, Ioannidis JP (2013) Demystifying trial networks and network meta-analysis. BMJ 346:f2914CrossRefGoogle Scholar
  29. 29.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557CrossRefPubMedGoogle Scholar
  30. 30.
    Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions version 5.1. 0. The cochrane collaboration, 5Google Scholar
  31. 31.
    Salanti G, Higgins JP, Ades AE, Ioannidis JP (2008) Evaluation of networks of randomized trials. Stat Methods Med Res 17:279–301CrossRefGoogle Scholar
  32. 32.
    Lu G, Ades AE (2004) Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med 23:3105–3124CrossRefGoogle Scholar
  33. 33.
    Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G (2013) Graphical tools for network meta-analysis in STATA. PLoS One 8:e76654CrossRefPubMedGoogle Scholar
  34. 34.
    Salanti G, Ades AE, Ioannidis JP (2011) Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 64:163–171CrossRefGoogle Scholar
  35. 35.
    Feng F, Zhang Y, Hou J, Cai J, Jiang Q, Li X, Zhao Q, Li BA (2018) Can music improve sleep quality in adults with primary insomnia? A systematic review and network meta-analysis. Int J Nurs Stud 77:189–196CrossRefGoogle Scholar
  36. 36.
    Balshem H, Helfand M, Schünemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S, Guyatt GH (2011) GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64:401–406CrossRefGoogle Scholar
  37. 37.
    Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336:924–926CrossRefPubMedGoogle Scholar
  38. 38.
    Evia-Viscarra ML, Rodea-Montero ER, Apolinar-Jiménez E, Munoz-Noriega N, García-Morales LM, Leaños-Pérez C, Figueroa-Barrón M, Sánchez-Fierros D, Reyes-García JG (2012) The effects of metformin on inflammatory mediators in obese adolescents with insulin resistance: controlled randomized clinical trial. J Pediatr Endocrinol Metab 25:41–49CrossRefGoogle Scholar
  39. 39.
    Gómez-Díaz RA, Talavera JO, Pool EC, Ortiz-Navarrete FV, Solórzano-Santos F, Mondragón-González R, Valladares-Salgado A, Cruz M, Aguilar-Salinas CA, Wacher NH (2012) Metformin decreases plasma resistin concentrations in pediatric patients with impaired glucose tolerance: a placebo-controlled randomized clinical trial. Metab Clin Exp 61:1247–1255CrossRefPubMedGoogle Scholar
  40. 40.
    Kendall D, Vail A, Amin R, Barrett T, Dimitri P, Ivison F, Kibirige M, Mathew V, Matyka K, McGovern A, Stirling H, Tetlow L, Wales J, Wright N, Clayton P, Stirling H (2013) Metformin in obese children and adolescents: the MOCA trial. J Clin Endocrinol Metab 98:322–329CrossRefGoogle Scholar
  41. 41.
    Mauras N, DelGiorno C, Hossain J, Bird K, Killen K, Merinbaum D, Weltman A, Damaso L, Balagopal P (2012) Metformin use in children with obesity and normal glucose tolerance–effects on cardiovascular markers and intrahepatic fat. J Pediatr Endocrinol Metab 25:33–40CrossRefPubMedGoogle Scholar
  42. 42.
    Rynders C, Weltman A, DelGiorno C, Balagopal P, Damaso L, Killen K, Mauras N (2012) Lifestyle intervention improves fitness independent of metformin in obese adolescents. Med Sci Sports Exerc 44:786CrossRefPubMedGoogle Scholar
  43. 43.
    Yanovski JA, Krakoff J, Salaita CG, McDuffie JR, Kozlosky M, Sebring NG, Reynolds JC, Brady SM, Calis KA (2011) Effects of metformin on body weight and body composition in obese insulin-resistant children: a randomized clinical trial. Diabetes 60:477–485CrossRefPubMedGoogle Scholar
  44. 44.
    Rezvanian H, Hashemipour M, Kelishadi R, Tavakoli N, Poursafa PA (2010) Randomized, triple masked, placebo-controlled clinical trial for controlling childhood obesity. World J Pediatr 6:317–322CrossRefGoogle Scholar
  45. 45.
    Wiegand S, l’Allemand D, Hübel H, Krude H, Bürmann M, Martus P, Grüters A, Holl RW (2010) Metformin and placebo therapy both improve weight management and fasting insulin in obese insulin-resistant adolescents: a prospective, placebo-controlled, randomized study. Eur J Endocrinol 163:585–592CrossRefGoogle Scholar
  46. 46.
    Wilson DM, Abrams SH, Aye T, Lee PD, Lenders C, Lustig RH, Osganian SV, Feldman HA (2010) Metformin extended release treatment of adolescent obesity: a 48-week randomized, double-blind, placebo-controlled trial with 48-week follow-up. Arch Pediatr Adolesc Med 164:116–123CrossRefGoogle Scholar
  47. 47.
    Clarson CL, Mahmud FH, Baker JE, Clark HE, Mckay WM, Schauteet VD, Hill DJ (2009) Metformin in combination with structured lifestyle intervention improved body mass index in obese adolescents, but did not improve insulin resistance. Endocrine 36:141–146CrossRefGoogle Scholar
  48. 48.
    Atabek ME, Pirgon O (2008) Use of metformin in obese adolescents with hyperinsulinemia: a 6-month, randomized, double-blind, placebo-controlled clinical trial. J Pediatr Endocrinol Metab 21:339–348Google Scholar
  49. 49.
    Burgert TS, Duran EJ, Goldberg-Gell R, Dziura J, Yeckel CW, Katz S, Tamborlane WV, Caprio S (2008) Short-term metabolic and cardiovascular effects of metformin in markedly obese adolescents with normal glucose tolerance. Pediatr Diabetes 9:567–576CrossRefGoogle Scholar
  50. 50.
    Love-Osborne K, Sheeder J, Zeitler P (2008) Addition of metformin to a lifestyle modification program in adolescents with insulin resistance. J Pediatr 152:817–822CrossRefPubMedGoogle Scholar
  51. 51.
    Freemark M, Bursey D (2001) The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics 107:e55CrossRefGoogle Scholar
  52. 52.
    Kay JP, Alemzadeh R, Langley G, D’angelo L, Smith P, Holshouser S (2001) Beneficial effects of metformin in normoglycemic morbidly obese adolescents. Metab Clin Exp 50:1457–1461CrossRefGoogle Scholar
  53. 53.
    Worsley R, Jane F, Robinson PJ, Bell RJ, Davis SR (2015) Metformin for overweight women at midlife: a double-blind, randomized, controlled trial. Climacteric 18:270–277CrossRefGoogle Scholar
  54. 54.
    Kim C, Randolph JF, Golden SH, Labrie F, Kong S, Nan B, Barrett-Connor E (2015) Weight loss decreases follicle stimulating hormone in overweight postmenopausal women. Obesity 23:228–233CrossRefGoogle Scholar
  55. 55.
    Picarelli A, Di Tola M, Tabacco F, Marino M, Borghini R, D’Amico T, Lubrano C, Gargiulo P (2013) Enhancing treatment of obesity by using a distracting mini-meal: a new approach to an old problem. Hormones 12:101–110CrossRefGoogle Scholar
  56. 56.
    He H, Zhao Z, Chen J, Ni Y, Zhong J, Yan Z, Li Y, Liu D, Pletcher MJ, Zhu Z (2012) Metformin-based treatment for obesity-related hypertension: a randomized, double-blind, placebo-controlled trial. J Hypertens 30:1430–1439CrossRefGoogle Scholar
  57. 57.
    Lim SS, Norman RJ, Clifton PM, Noakes M (2011) The effect of comprehensive lifestyle intervention or metformin on obesity in young women. Nutr Metab Cardiovasc Dis 21:261–268Google Scholar
  58. 58.
    Ackermann RT, Edelstein SL, Narayan KM, Zhang P, Engelgau MM, Herman WH, Marrero DG (2009) Changes in health state utilities with changes in body mass in the diabetes prevention program. Obesity 17:2176–2181CrossRefGoogle Scholar
  59. 59.
    Guimarães C, Pereira LR, Iucif Júnior N, Cesarino EJ, de Almeida CA, Carvalho DD, Queiroz RH (2006) Tolerability and effectiveness of fluoxetine, metformin and sibutramine in reducing anthropometric and metabolic parameters in obese patients. Arq Bras Endocrinol Metabol 50:1020–1025CrossRefGoogle Scholar
  60. 60.
    James AP, Watts GF, Mamo JCL (2005) The effect of metformin and rosiglitazone on postprandial lipid metabolism in obese insulin-resistant subjects. Diabetes Obes Metab 7:381–389CrossRefGoogle Scholar
  61. 61.
    Rodríguez-Moctezuma JR, Robles-López G, López-Carmona JM, Gutiérrez-Rosas MJ (2005) Effects of metformin on the body composition in subjects with risk factors for type 2 diabetes. Diabetes Obes Metab 7:189–192CrossRefGoogle Scholar
  62. 62.
    Stakos DA, Schuster DP, Sparks EA, Wooley CF, Osei K, Boudoulas H (2005) Long term cardiovascular effects of oral antidiabetic agents in non-diabetic patients with insulin resistance: double blind, prospective, randomised study. Heart 91:589–594CrossRefPubMedGoogle Scholar
  63. 63.
    Rodríguez Y, Giri M, Feyen E, Christophe AB (2004) Effect of metformin vs. placebo treatment on serum fatty acids in non-diabetic obese insulin resistant individuals. Prostaglandins Leukot Essent Fat Acids 71:391–397CrossRefGoogle Scholar
  64. 64.
    Kantola I, Rouru J, Malminiemi K, Arkkila P, Korhonen K, Rantanen S, Huupponen R (2002) Effect of metformin on blood pressure. Clinical Drug Investigation 22:347–354CrossRefGoogle Scholar
  65. 65.
    Lehtovirta M, Forsen B, Gullström M, Häggblom M, Eriksson JG, Taskinen MR, Groop L (2001) Metabolic effects of metformin in patients with impaired glucose tolerance. Diabet Med 18:578–583CrossRefGoogle Scholar
  66. 66.
    Charles MA, Eschwège E, Grandmottet P, Isnard F, Cohen JM, Bensoussan JL, Berche H, Chapiro O, André P, Vague P, Juhan-Vague I, Bard JM, Juhan-Vague I (2000) Treatment with metformin of non-diabetic men with hypertension, hypertriglyceridaemia and central fat distribution: the BIGPRO 1.2 trial. Diabetes Metab Res Rev 16:2–7CrossRefGoogle Scholar
  67. 67.
    Li CL, Pan CY, Lu JM, Zhu Y, Wang JH, Deng XX, Xia FC, Wang HZ, Wang HY (1999) Effect of metformin on patients with impaired glucose tolerance. Diabet Med 16:477–481CrossRefGoogle Scholar
  68. 68.
    Morel Y, Golay A, Perneger T, Lehmann T, Vadas L, Pasik C, Reaven GM (1999) Metformin treatment leads to an increase in basal, but not insulin-stimulated, glucose disposal in obese patients with impaired glucose tolerance. Diabet Med 16:650–655CrossRefGoogle Scholar
  69. 69.
    Paolisso G, Amato L, Eccellente R et al (1998) Effect of metformin on food intake in obese subjects. Eur J Clin Investig 28(6):441–446CrossRefGoogle Scholar
  70. 70.
    Fontbonne A, Charles MA, Juhan-Vague I, Bard JM, André P, Isnard F, Cohen JM, Grandmottet P, Vague P, Safar ME, Eschwège E (1996) The effect of metformin on the metabolic abnormalities associated with upper-body fat distribution. BIGPRO Study Group. Diabetes Care 19:920–926CrossRefGoogle Scholar
  71. 71.
    Pariente A, Mansiaux Y, Jarné A et al (2017) Impact of pioglitazone regulatory withdrawal on antidiabetic drug use and health in diabetic patients [J]. Eur J Clin Pharmacol 73(12):1655–1663CrossRefGoogle Scholar
  72. 72.
    Nadeau KJ, Ehlers LB, Zeitler PS, Love-Osborne K (2009) Treatment of non-alcoholic fatty liver disease with metformin versus lifestyle intervention in insulin-resistant adolescents. Pediatr Diabetes 10:5–13CrossRefGoogle Scholar
  73. 73.
    Glueck CJ, Fontaine RN, Wang P, Subbiah MTR, Weber K, Illig E, Streicher P, Sieve-Smith L, Tracy TM, Lang JE, McCullough P (2001) Metformin reduces weight, centripetal obesity, insulin, leptin, and low-density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30. Metab Clin Exp 50:856–861CrossRefGoogle Scholar
  74. 74.
    Lord J, Wilkin T (2004) Metformin in polycystic ovary syndrome. Curr Opin Obstet Gynecol 16:481–486CrossRefGoogle Scholar
  75. 75.
    Mannucci E, Ognibene A, Cremasco F, Bardini G, Mencucci A, Pierazzuoli E, Ciani S, Messeri G, Rotella CM (2001) Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in obese nondiabetic subjects. Diabetes Care 24:489–494CrossRefGoogle Scholar
  76. 76.
    Srinivasan S, Ambler GR, Baur LA, Garnett SP, Tepsa M, Yap F, Ward GM, Cowell CT (2006) Randomized, controlled trial of metformin for obesity and insulin resistance in children and adolescents: improvement in body composition and fasting insulin. J Clin Endocrinol Metab 91:2074–2080CrossRefGoogle Scholar
  77. 77.
    Desilets AR, Dhakal-Karki S, Dunican KC (2008) Role of metformin for weight management in patients without type 2 diabetes. Ann Pharmacother 42:817–826CrossRefGoogle Scholar
  78. 78.
    Peirson L, Douketis J, Ciliska D, Fitzpatrick-Lewis D, Ali MU, Raina P (2014) Treatment for overweight and obesity in adult populations: a systematic review and meta-analysis. CMAJ Open 2:E306CrossRefPubMedGoogle Scholar
  79. 79.
    Pasquali R, Gambineri A, Biscotti D, Vicennati V, Gagliardi L, Colitta D, Fiorini S, Cognigni GE, Filicori M, Morselli-Labate AM (2000) Effect of long-term treatment with metformin added to hypocaloric diet on body composition, fat distribution, and androgen and insulin levels in abdominally obese women with and without the polycystic ovary syndrome. J Clin Endocrinol Metab 85:2767–2774CrossRefGoogle Scholar
  80. 80.
    Jarskog LF, Hamer RM, Catellier DJ, Stewart DD, LaVange L, Ray N, Golden LH, Lieberman JA, Stroup TS, Investigators METS (2013) Metformin for weight loss and metabolic control in overweight outpatients with schizophrenia and schizoaffective disorder. Am J Psychiatr 170:1032–1040CrossRefGoogle Scholar
  81. 81.
    Ji L, Zinman B, Patel S, Ji J, Bailes Z, Thiemann S, Seck T (2015) Efficacy and safety of linagliptin co-administered with low-dose metformin once daily versus high-dose metformin twice daily in treatment-Naïve patients with type 2 diabetes: a double-blind randomized trial. Adv Ther 32:201–215CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Clinical PharmacyShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China
  2. 2.Department of PharmacyNorthern Theater Command General HospitalShenyangPeople’s Republic of China

Personalised recommendations