Is there a potential association between spironolactone and the risk of new-onset diabetes in a cohort of older patients with heart failure?

  • Sandra Korol
  • Michel White
  • Eileen O’Meara
  • Jean-Lucien Rouleau
  • Brian White-Guay
  • Marc Dorais
  • Ali Ahmed
  • Simon de DenusEmail author
  • Sylvie PerreaultEmail author
Pharmacoepidemiology and Prescription



Some evidence suggests that spironolactone may have a deleterious effect on glucose homeostasis. The objective of this study was to assess whether spironolactone use is associated with a higher risk of developing diabetes in a large cohort of patients with heart failure (HF).


Two Quebec government administrative databases were used to identify a cohort of hospitalized patients discharged between January 1995 and December 2009 with a primary discharge diagnosis of HF and without secondary discharge diagnosis of diabetes. Patients were categorized as new users of spironolactone and non-users. The primary outcome was defined as new-onset diabetes (NOD) during 5 years of follow-up and was ascertained using ICD codes for diabetes or use of hypoglycemic agents.


Among the 2974 patients that were included in the cohort analysis, 769 were given a new prescription of spironolactone. The incidence rate of NOD was similar among spironolactone users (5.0 per 100 person-years) and non-users (4.9 per 100 person-years). There was no significant association between the use of spironolactone and NOD in the crude, unadjusted model (hazard ratio (HR) 1.01; 95% confidence interval (CI) 0.80–1.28; p = 0.9217), and it remained unchanged in the adjusted Cox proportional hazard model (HR = 0.92; 95% CI = 0.72–1.18; p = 0.5227). The results were consistent with those observed in sensitivity analyses of a 1:3 propensity score-matched cohort (HR = 0.97; CI = 0.76–1.25; p = 0.8169).


We found no evidence supporting the claim that use of spironolactone is associated with a higher risk of diabetes among patients hospitalized for HF.


Spironolactone Heart failure Diabetes mellitus Mineralocorticoid receptor Aldosterone 



Réseau Québécois de Recherche sur Médicament (RQRM).

Compliance with ethical standards

Conflicts of interest

Sandra Korol: Sandra Korol received funding from Fonds de recherche du Québec – Santé (FRQS). Michel White: Dr. White received research grants from Bayer, Jenssen, Novartis, and Pfizer. He was a consultant for Jenssen USA and Arca Biopharma USA, and was a conference speaker for Bayer, Novartis, Pfizer, BMS, Servier, and BI. Simon de Denus: Dr. de Denus has received research grants or been a co-investigator on grants supported by AstraZeneca, Novartis, Roche and Pfizer. He has received speaker fees from Pfizer and consulting fees from Servier and Novartis. All other authors declare that they have no conflicts of interest.

Supplementary material

228_2018_2615_MOESM1_ESM.pdf (229 kb)
ESM 1 (PDF 229 kb)


  1. 1.
    Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341(10):709–717. CrossRefGoogle Scholar
  2. 2.
    Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B, Group E-HS (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364(1):11–21. CrossRefGoogle Scholar
  3. 3.
    Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M, Eplerenone Post-Acute Myocardial Infarction Heart Failure E, Survival Study I (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348(14):1309–1321. CrossRefGoogle Scholar
  4. 4.
    Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, Clausell N, Desai AS, Diaz R, Fleg JL, Gordeev I, Harty B, Heitner JF, Kenwood CT, Lewis EF, O'Meara E, Probstfield JL, Shaburishvili T, Shah SJ, Solomon SD, Sweitzer NK, Yang S, McKinlay SM, Investigators T (2014) Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370(15):1383–1392. CrossRefGoogle Scholar
  5. 5.
    Ezekowitz JA, O'Meara E, McDonald MA, Abrams H, Chan M, Ducharme A, Giannetti N, Grzeslo A, Hamilton PG, Heckman GA, Howlett JG, Koshman SL, Lepage S, McKelvie RS, Moe GW, Rajda M, Swiggum E, Virani SA, Zieroth S, Al-Hesayen A, Cohen-Solal A, D'Astous M, De S, Estrella-Holder E, Fremes S, Green L, Haddad H, Harkness K, Hernandez AF, Kouz S, LeBlanc MH, Masoudi FA, Ross HJ, Roussin A, Sussex B (2017) 2017 comprehensive update of the Canadian cardiovascular society guidelines for the management of heart failure. Can J Cardiol 33(11):1342–1433. CrossRefGoogle Scholar
  6. 6.
    Mosenkis A, Townsend RR (2004) Gynecomastia and antihypertensive therapy. J Clin Hypertens 6(8):469–470CrossRefGoogle Scholar
  7. 7.
    Yamaji M, Tsutamoto T, Kawahara C, Nishiyama K, Yamamoto T, Fujii M, Horie M (2010) Effect of eplerenone versus spironolactone on cortisol and hemoglobin A(1)(c) levels in patients with chronic heart failure. Am Heart J 160(5):915–921. CrossRefGoogle Scholar
  8. 8.
    Swaminathan K, Davies J, George J, Rajendra NS, Morris AD, Struthers AD (2008) Spironolactone for poorly controlled hypertension in type 2 diabetes: conflicting effects on blood pressure, endothelial function, glycaemic control and hormonal profiles. Diabetologia 51(5):762–768. CrossRefGoogle Scholar
  9. 9.
    Davies JI, Band M, Morris A, Struthers AD (2004) Spironolactone impairs endothelial function and heart rate variability in patients with type 2 diabetes. Diabetologia 47(10):1687–1694. CrossRefGoogle Scholar
  10. 10.
    Matsumoto S, Takebayashi K, Aso Y (2006) The effect of spironolactone on circulating adipocytokines in patients with type 2 diabetes mellitus complicated by diabetic nephropathy. Metab Clin Exp 55(12):1645–1652. CrossRefGoogle Scholar
  11. 11.
    Saczynski JS, Andrade SE, Harrold LR, Tjia J, Cutrona SL, Dodd KS, Goldberg RJ, Gurwitz JH (2012) A systematic review of validated methods for identifying heart failure using administrative data. Pharmacoepidemiol Drug Saf 21(Suppl 1):129–140. CrossRefGoogle Scholar
  12. 12.
    West SL, Ritchey ME, Poole C (2012) Validity of pharmacoepidemiologic drug and diagnosis data. In: Pharmacoepidemiology. Wiley-Blackwell, Hoboken, pp 757–794CrossRefGoogle Scholar
  13. 13.
    Quan H, Khan N, Hemmelgarn BR, Tu K, Chen G, Campbell N, Hill MD, Ghali WA, McAlister FA, Hypertension O, Surveillance Team of the Canadian Hypertension Education P (2009) Validation of a case definition to define hypertension using administrative data. Hypertension 54(6):1423–1428. CrossRefGoogle Scholar
  14. 14.
    Kadhim-Saleh A, Green M, Williamson T, Hunter D, Birtwhistle R (2013) Validation of the diagnostic algorithms for 5 chronic conditions in the Canadian primary care sentinel surveillance network (CPCSSN): a Kingston practice-based research network (PBRN) report. J Am Board Fam Med 26(2):159–167. CrossRefGoogle Scholar
  15. 15.
    Pariente A, Fourrier-Reglat A, Ducruet T, Farrington P, Beland SG, Dartigues JF, Moore N, Moride Y (2012) Antipsychotic use and myocardial infarction in older patients with treated dementia. Arch Intern Med 172(8):648–653; discussion 654-645. CrossRefGoogle Scholar
  16. 16.
    Austin PC (2008) Primer on statistical interpretation or methods report card on propensity-score matching in the cardiology literature from 2004 to 2006: a systematic review. Circ Cardiovasc Qual Outcomes 1(1):62–67. CrossRefGoogle Scholar
  17. 17.
    Heinze G, Juni P (2011) An overview of the objectives of and the approaches to propensity score analyses. Eur Heart J 32(14):1704–1708. CrossRefGoogle Scholar
  18. 18.
    Filippatos GS, Ahmed MI, Gladden JD, Mujib M, Aban IB, Love TE, Sanders PW, Pitt B, Anker SD, Ahmed A (2011) Hyperuricaemia, chronic kidney disease, and outcomes in heart failure: potential mechanistic insights from epidemiological data. Eur Heart J 32(6):712–720. CrossRefGoogle Scholar
  19. 19.
    Ekundayo OJ, Dell'Italia LJ, Sanders PW, Arnett D, Aban I, Love TE, Filippatos G, Anker SD, Lloyd-Jones DM, Bakris G, Mujib M, Ahmed A (2010) Association between hyperuricemia and incident heart failure among older adults: a propensity-matched study. Int J Cardiol 142(3):279–287. CrossRefGoogle Scholar
  20. 20.
    Ahmed MI, White M, Ekundayo OJ, Love TE, Aban I, Liu B, Aronow WS, Ahmed A (2009) A history of atrial fibrillation and outcomes in chronic advanced systolic heart failure: a propensity-matched study. Eur Heart J 30(16):2029–2037. CrossRefGoogle Scholar
  21. 21.
    Jankowska EA, Filippatos G, Ponikowska B, Borodulin-Nadzieja L, Anker SD, Banasiak W, Poole-Wilson PA, Ponikowski P (2009) Reduction in circulating testosterone relates to exercise capacity in men with chronic heart failure. J Card Fail 15(5):442–450. CrossRefGoogle Scholar
  22. 22.
    Jankowska EA, Drohomirecka A, Ponikowska B, Witkowska A, Lopuszanska M, Szklarska A, Borodulin-Nadzieja L, Banasiak W, Poole-Wilson PA, Ponikowski P (2010) Deficiencies in circulating testosterone and dehydroepiandrosterone sulphate, and depression in men with systolic chronic heart failure. Eur J Heart Fail 12(9):966–973. CrossRefGoogle Scholar
  23. 23.
    Al Hayek AA, Khader YS, Jafal S, Khawaja N, Robert AA, Ajlouni K (2013) Prevalence of low testosterone levels in men with type 2 diabetes mellitus: a cross-sectional study. J Family Community Med 20(3):179–186. CrossRefGoogle Scholar
  24. 24.
    Shoupe D, Lobo RA (1984) The influence of androgens on insulin resistance. Fertil Steril 41(3):385–388CrossRefGoogle Scholar
  25. 25.
    Grossmann M (2014) Testosterone and glucose metabolism in men: current concepts and controversies. J Endocrinol 220(3):R37–R55. CrossRefGoogle Scholar
  26. 26.
    Catena C, Lapenna R, Baroselli S, Nadalini E, Colussi G, Novello M, Favret G, Melis A, Cavarape A, Sechi LA (2006) Insulin sensitivity in patients with primary aldosteronism: a follow-up study. J Clin Endocrinol Metab 91(9):3457–3463. CrossRefGoogle Scholar
  27. 27.
    Nakhjavani M, Hamidi S, Esteghamati A, Abbasi M, Nosratian-Jahromi S, Pasalar P (2009) Short term effects of spironolactone on blood lipid profile: a 3-month study on a cohort of young women with hirsutism. Br J Clin Pharmacol 68(4):634–637. CrossRefGoogle Scholar
  28. 28.
    Ogino K, Kinugasa Y, Kato M, Yamamoto K, Hisatome I, Anker SD, Doehner W (2014) Spironolactone, not furosemide, improved insulin resistance in patients with chronic heart failure. Int J Cardiol 171(3):398–403. CrossRefGoogle Scholar
  29. 29.
    Sandstrom PE, Sehlin J, Amark K (1993) Furosemide treatment causes age-dependent glucose intolerance and islet damage in obese-hyperglycaemic mice. Pharmacol Toxicol 72(4–5):304–309CrossRefGoogle Scholar
  30. 30.
    Preiss D, Zetterstrand S, McMurray JJ, Ostergren J, Michelson EL, Granger CB, Yusuf S, Swedberg K, Pfeffer MA, Gerstein HC, Sattar N, Candesartan in Heart Failure Assessment of Reduction in M, Morbidity I (2009) Predictors of development of diabetes in patients with chronic heart failure in the candesartan in heart failure assessment of reduction in mortality and morbidity (CHARM) program. Diabetes Care 32(5):915–920. CrossRefGoogle Scholar
  31. 31.
    Korol S, Mottet F, Perreault S, Baker WL, White M, de Denus S (2017) A systematic review and meta-analysis of the impact of mineralocorticoid receptor antagonists on glucose homeostasis. Medicine 96(48):e8719. CrossRefGoogle Scholar
  32. 32.
    Zhao JV, Xu L, Lin SL, Schooling CM (2016) Spironolactone and glucose metabolism, a systematic review and meta-analysis of randomized controlled trials. J Am Soc Hypertens 10(8):671–682. CrossRefGoogle Scholar
  33. 33.
    Korol S, White M, O'Meara E, Tournoux F, Racine N, Ducharme A, Rouleau JL, Liszkowski M, Mansour A, Jutras M, Guertin MC, Bernier M, Lavoie J, Leclair G, Neagoe PE, Chaar D, Sirois MG, de Denus S (2018) A comparison of the effects of selective and non-selective mineralocorticoid antagonism on glucose homeostasis of heart failure patients with glucose intolerance or type II diabetes: a randomized controlled double-blind trial. Am Heart J 204:190–195. CrossRefGoogle Scholar
  34. 34.
    Preiss D, van Veldhuisen DJ, Sattar N, Krum H, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B, Zannad F, McMurray JJ (2012) Eplerenone and new-onset diabetes in patients with mild heart failure: results from the Eplerenone in mild patients hospitalization and survival study in heart failure (EMPHASIS-HF). Eur J Heart Fail 14(8):909–915. CrossRefGoogle Scholar
  35. 35.
    Tenenbaum A, Motro M, Fisman EZ, Leor J, Freimark D, Boyko V, Mandelzweig L, Adler Y, Sherer Y, Behar S (2003) Functional class in patients with heart failure is associated with the development of diabetes. Am J Med 114(4):271–275CrossRefGoogle Scholar
  36. 36.
    Amato L, Paolisso G, Cacciatore F, Ferrara N, Ferrara P, Canonico S, Varricchio M, Rengo F (1997) Congestive heart failure predicts the development of non-insulin-dependent diabetes mellitus in the elderly. The Osservatorio Geriatrico Regione Campania Group. Diabetes Metab 23(3):213–218Google Scholar
  37. 37.
    Suskin N, McKelvie RS, Burns RJ, Latini R, Pericak D, Probstfield J, Rouleau JL, Sigouin C, Solymoss CB, Tsuyuki R, White M, Yusuf S (2000) Glucose and insulin abnormalities relate to functional capacity in patients with congestive heart failure. Eur Heart J 21(16):1368–1375. CrossRefGoogle Scholar
  38. 38.
    Iannello S, Milazzo P, Belfiore F (2007) Animal and human tissue Na,K-ATPase in obesity and diabetes: a new proposed enzyme regulation. Am J Med Sci 333(1):1–9CrossRefGoogle Scholar
  39. 39.
    Rafacho A, Ortsater H, Nadal A, Quesada I (2014) Glucocorticoid treatment and endocrine pancreas function: implications for glucose homeostasis, insulin resistance and diabetes. J Endocrinol 223(3):R49–R62. CrossRefGoogle Scholar
  40. 40.
    Epstein M, Williams GH, Weinberger M, Lewin A, Krause S, Mukherjee R, Patni R, Beckerman B (2006) Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol 1(5):940–951. CrossRefGoogle Scholar
  41. 41.
    Ukena C, Dobre D, Mahfoud F, Kindermann I, Lamiral Z, Tala S, Rossignol P, Turgonyi E, Pitt B, Bohm M, Zannad F (2012) Hypo- and hyperglycemia predict outcome in patients with left ventricular dysfunction after acute myocardial infarction: data from EPHESUS. J Card Fail 18(6):439–445. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sandra Korol
    • 1
    • 2
  • Michel White
    • 3
    • 2
  • Eileen O’Meara
    • 3
    • 2
  • Jean-Lucien Rouleau
    • 3
    • 2
  • Brian White-Guay
    • 1
  • Marc Dorais
    • 4
    • 5
  • Ali Ahmed
    • 6
    • 7
  • Simon de Denus
    • 1
    • 2
    Email author
  • Sylvie Perreault
    • 1
    • 4
    Email author
  1. 1.Faculty of PharmacyUniversité de MontréalMontréalCanada
  2. 2.Montreal Heart InstituteMontrealCanada
  3. 3.Faculty of MedicineUniversité de MontréalMontrealCanada
  4. 4.Sanofi Aventis Endowment Research Chair in Optimal Drug UseMontrealCanada
  5. 5.StatSciences Inc.N.-D.-Ile-PerrotCanada
  6. 6.Veterans Affairs Medical CenterWashingtonUSA
  7. 7.George Washington UniversityWashingtonUSA

Personalised recommendations