Advertisement

Marine Biology

, 166:142 | Cite as

Variation in consumer pressure along 2500 km in a major upwelling system: crab predators are more important at higher latitudes

  • Catalina A. Musrri
  • Alistair G. B. Poore
  • Iván A. Hinojosa
  • Erasmo C. Macaya
  • Aldo S. Pacheco
  • Alejandro Pérez-Matus
  • Oscar Pino-Olivares
  • Nicolás Riquelme-Pérez
  • Wolfgang B. Stotz
  • Nelson Valdivia
  • Vieia Villalobos
  • Martin ThielEmail author
Original Paper

Abstract

Consumer pressure in benthic communities is predicted to be higher at low than at high latitudes, but support for this pattern has been ambiguous, especially for herbivory. To understand large-scale variation in biotic interactions, we quantify consumption (predation and herbivory) along 2500 km of the Chilean coast (19°S–42°S). We deployed tethering assays at ten sites with three different baits: the crab Petrolisthes laevigatus as living prey for predators, dried squid as dead prey for predators/scavengers, and the kelp Lessonia spp. for herbivores. Underwater videos were used to characterize the consumer community and identify those species consuming baits. The species composition of consumers, frequency of occurrence, and maximum abundance (MaxN) of crustaceans and the blenniid fish Scartichthys spp. varied across sites. Consumption of P. laevigatus and kelp did not vary with latitude, while squid baits were consumed more quickly at mid and high latitudes. This is likely explained by the increased occurrence of predatory crabs, which was positively correlated with consumption of squidpops after 2 h. Crabs, rather than fish, were the principal consumers of squid baits (91% of all recorded predation events) at sites south of 30°S. Fish and crustaceans preyed in similar proportion on P. laevigatus, with most fish predation events at northern sites. The absence of any strong latitudinal patterns in consumption rate of tethered prey is likely due to redundancy among consumers across the latitudinal range, with crustaceans gaining in importance with increasing latitude, possibly replacing fish as key predators.

Notes

Acknowledgements

We are grateful to the local fishermen who allowed us to work in their fishing areas and helped with logistics at many of our study sites. We also thank Boris Lopez for his help with Fig. 1 and Maria de los Angeles Gallardo for her help in identifying some brachyuran crabs. Two anonymous reviewers provided many constructive suggestions that helped to improve the original manuscript.

Author contributions

MT conceived the study, with the support of WBS, IAH, ECM, ASP, AP-M, and NV. CAM, MT, and AGBP wrote the manuscript. OP-O, NR-P, and VV developed the experimental design and conducted the field and laboratory experiments. CAM reviewed videos and organized data and together with AGBP did the statistical analyses. All authors commented on previous versions of the manuscript and all authors read and approved the final version of the manuscript.

Funding

This study was financed by a FONDECYT Grant (CONICYT-FONDECYT 1161383).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted and ethical approval was obtained from the Comité Ético Científico de la Universidad Católica del Norte, Sede Coquimbo (resolution 2019-4), following applicable international, national, and/or institutional guidelines for the care and use of animals. All field surveys were conducted under the resolution 2649 from the “Subsecretaría de Pesca y Acuicultura” (SUBPESCA) published in the “Official Newspaper of Chilean Republic”, num. 41,553 on September 2016.

Supplementary material

227_2019_3587_MOESM1_ESM.pdf (819 kb)
Supplementary material 1 (PDF 804 kb)

References

  1. Aguilera MA, Aburto JA, Bravo L, Broitman BR, García RA, Gaymer CF, Gelcich S, López BA, Montecino V, Pauchard A, Ramos M, Rutllant JA, Sáez CA, Valdivia N, Thiel M (2019) Chile: environmental status and future perspectives. In Sheppard C (ed) World seas: an environmental evaluation, 2nd edn. Academic Press, London, pp 673–702.  https://doi.org/10.1016/B978-0-12-805068-2.00046-2 CrossRefGoogle Scholar
  2. Angel A, Ojeda FP (2001) Structure and trophic organization of subtidal fish assemblages on the northern Chilean coast: the effect of habitat complexity. Mar Ecol Prog Ser 217:81–91.  https://doi.org/10.3354/meps217081 CrossRefGoogle Scholar
  3. Anstett DN, Naujokaitis-Lewis I, Johnson MTJ (2014) Latitudinal gradients in herbivory on Oenothera biennis vary according to herbivore guild and specialization. Ecology 95:2915–2923.  https://doi.org/10.1890/13-0932.1 CrossRefGoogle Scholar
  4. Anstett DN, Nunes KA, Baskett C, Kotanen PM (2016) Sources of controversy surrounding latitudinal patterns in herbivory and defense. Trends Ecol Evol 31:789–802.  https://doi.org/10.1016/j.tree.2016.07.011 CrossRefPubMedGoogle Scholar
  5. Aronson RB, Heck KL Jr (1995) Tethering experiments and hypothesis testing in ecology. Mar Ecol Prog Ser 121:307–309.  https://doi.org/10.3354/meps121307 CrossRefGoogle Scholar
  6. Baskett CA, Schemske DW (2018) Latitudinal patterns of herbivore pressure in a temperate herb support the biotic interactions hypothesis. Ecol Lett 21:578–587.  https://doi.org/10.1111/ele.12925 CrossRefPubMedGoogle Scholar
  7. Beck MW (2017) ggord: ordination Plots with ggplot2. R package version 1.0.0. https://zenodo.org/badge/latestdoi/35334615. Accessed 23 Sept 2019
  8. Berrios V, Vargas M (2004) Estructura trófica de la asociación de peces intermareales de la costa rocosa del norte de Chile. Rev Biol Trop 52:201–212.  https://doi.org/10.4067/S0716-078X2000000400016 CrossRefPubMedGoogle Scholar
  9. Cáceres CW, Benavides AG, Ojeda FP (1993) Ecología trófica del pez herbívoro Aplodactylus punctatus (Pisces: Aplodactylidae) en la costa centro-norte de Chile. Rev Chil Hist Nat 66:185–194Google Scholar
  10. Caillaux LM, Stotz WB (2003) Distribution and abundance of Rhynchocinetes typus (Crustacea: Decapoda), in different benthic community structures in northern Chile. J Mar Biol Assoc UK 83:143–150.  https://doi.org/10.1017/S0025315403006908h CrossRefGoogle Scholar
  11. Camus PA, Daroch K, Opazo LF (2008) Potential for omnivory and apparent intraguild predation in rocky intertidal herbivore assemblages from northern Chile. Mar Ecol Prog Ser 361:35–45.  https://doi.org/10.3354/meps07421 CrossRefGoogle Scholar
  12. Cerda G, Wolff M (1993) Feeding ecology of the crab Cancer polyodon in La Herradura Bay, northern Chile. II. Food spectrum and prey consumption. Mar Ecol Prog Ser 100:119–125.  https://doi.org/10.3354/meps100119 CrossRefGoogle Scholar
  13. Cornejo-Acevedo MF, Fierro F, Bertrán C, Vargas-Chacoff L (2014) Composición y sobreposición dietaria de Pinguipes chilensis (Perciformes: Pinguipedidae), Cheilodactylus variegatus (Perciformes: Cheilodactylidae) y Aplodactylus punctatus (Perciformes: Aplodactylidae) en el litoral costero valdiviano, Chile. Gayana 78:98–108.  https://doi.org/10.4067/S0717-65382014000200003 CrossRefGoogle Scholar
  14. del-Val E, Armesto JJ (2010) Seedling mortality and herbivory damage in subtropical and temperate populations: testing the hypothesis of higher herbivore pressure toward the tropics. Biotropica 42:174–179.  https://doi.org/10.1111/j.1744-7429.2009.00554.x CrossRefGoogle Scholar
  15. Dennenmoser S, Thiel M (2007) Competition for food and mates by dominant and subordinate male rock shrimp, Rhynchocinetes typus. Behaviour 144:33–49.  https://doi.org/10.1163/156853907779947382 CrossRefGoogle Scholar
  16. Docmac F, Araya M, Hinojosa IA, Dorador C, Harrod C (2017) Habitat coupling writ large: pelagic-derived materials fuel benthivorous macroalgal reef fishes in an upwelling zone. Ecology 98:2267–2272.  https://doi.org/10.1002/ecy.1936 CrossRefPubMedGoogle Scholar
  17. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo H, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37.  https://doi.org/10.1146/annurev-marine-041911-111611 CrossRefGoogle Scholar
  18. Duffy JE, Ziegler SL, Campbell JE, Bippus PM, Lefcheck JS (2015) Squidpops: a simple tool to crowdsource a global map of marine predation intensity. PLoS One 10:e0142994.  https://doi.org/10.1371/journal.pone.014299 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dumont CP, Urriago JD, Abarca A, Gaymer CF, Thiel M (2009) The native rock shrimp Rhynchocinetes typus as a biological control of fouling in suspended scallop cultures. Aquaculture 292:74–79.  https://doi.org/10.1016/j.aquaculture.2009.03.044 CrossRefGoogle Scholar
  20. Dumont CP, Gaymer CF, Thiel M (2011) Predation contributes to invasion resistance of benthic communities against the non-indigenous tunicate Ciona intestinalis. Biol Invasions 13:2023–2034.  https://doi.org/10.1007/s10530-011-0018-7 CrossRefGoogle Scholar
  21. Dye AH (1991) Feed preferences of Nucella crassilabrum and juvenile Concholepas concholepas (Gastropoda: Muricidae) from a rocky shore in southern Chile. J Mollus Stud 57:301–307CrossRefGoogle Scholar
  22. Fernández M, Castilla JC (2000) Recruitment of Homalaspis plana in intertidal habitats of central Chile and implications for the current use of management and marine protected areas. Mar Ecol Prog Ser 208:157–170.  https://doi.org/10.3354/meps208157 CrossRefGoogle Scholar
  23. Fischer S, Thatje S (2008) Temperature-induced oviposition in the brachyuran crab Cancer setosus along a latitudinal cline: aquaria experiments and analysis of field-data. J Exp Mar Biol Ecol 357:157–164.  https://doi.org/10.1016/j.jembe.2008.01.007 CrossRefGoogle Scholar
  24. Fischer S, Thatje S (2016) Temperature effects on life-history traits cause challenges to the management of brachyuran crab fisheries in the Humboldt Current: a review. Fish Res 183:461–468.  https://doi.org/10.1016/j.fishres.2016.07.008 CrossRefGoogle Scholar
  25. Freestone AL, Osman RW (2011) Latitudinal variation in local interactions and regional enrichment shape patterns of marine community diversity. Ecology 92:208–217.  https://doi.org/10.1890/09-1841.1 CrossRefPubMedGoogle Scholar
  26. Freestone AL, Osman RW, Ruiz GM, Torchin ME (2011) Stronger predation in the tropics shapes species richness patterns in marine communities. Ecology 92:983–993.  https://doi.org/10.1890/09-2379.1 CrossRefPubMedGoogle Scholar
  27. Freidenburg TL, Menge BA, Halpin PM, Webster M, Sutton-Grier A (2007) Cross-scale variation in top-down and bottom-up control of algal abundance. J Exp Mar Biol Ecol 347:8–29.  https://doi.org/10.1016/j.jembe.2007.02.012 CrossRefGoogle Scholar
  28. Gauff RPM, Bejarano S, Madduppa HH, Subhan B, Dugény EMA, Perdana YA, Ferse SCA (2018) Influence of predation risk on the sheltering behavior of the coral-dwelling damselfish, Pomacentrus moluccensis. Environ Biol Fish 101:639–651.  https://doi.org/10.1007/s10641-018-0725-3 CrossRefGoogle Scholar
  29. Gaymer CF, Himmelman JH (2008) A keystone predatory sea star in the intertidal zone is controlled by a higher-order predatory sea star in the subtidal zone. Mar Ecol Prog Ser 370:143–153.  https://doi.org/10.3354/meps07663 CrossRefGoogle Scholar
  30. Godoy N, Gelcich S, Vásquez JA, Castilla JC (2010) Spearfishing to depletion: evidence from temperate reef fishes in Chile. Ecol Appl 20:1504–1511.  https://doi.org/10.1890/09-1806.1 CrossRefPubMedGoogle Scholar
  31. Godoy N, Gelcich S, Castilla JC, Lima M, Smith A (2016) Artisanal spearfishery in temperate nearshore ecosystems of Chile: exploring the catch composition, revenue, and management needs. Mar Coast Fish 8:436–447.  https://doi.org/10.1080/19425120.2016.1185062 CrossRefGoogle Scholar
  32. González A, Beltrán J, Hiriart-Bertrand L, Flores V, de Reviers B, Correa JA, Santelices B (2012) Identification of cryptic species in the Lessonia nigrescens complex (Phaeophyceae, Laminariales). J Phycol 48:1153–1165.  https://doi.org/10.1111/j.1529-8817.2012.01200.x CrossRefPubMedGoogle Scholar
  33. Gusmao JB, Lee MR, MacDonald I, Ory NC, Sellanes J, Watling L, Thiel M (2018) No reef-associated gradient in the infaunal communities of Rapa Nui (Easter Island) Are oceanic waves more important than reef predators? Estuar Coast Shelf S 210:123–131.  https://doi.org/10.1016/j.ecss.2018.06.019 CrossRefGoogle Scholar
  34. Gutow L, Long JD, Cerda O, Hinojosa IA, Rothäusler E, Tala F, Thiel M (2012) Herbivorous amphipods inhabit protective microhabitats within thalli of giant kelp Macrocystis pyrifera. Mar Biol 159:141–149.  https://doi.org/10.1007/s00227-011-1794-4 CrossRefGoogle Scholar
  35. Haavisto F, Jormalainen V (2014) Seasonality elicits herbivores’ escape from trophic control and favors induced resistance in a temperate macroalga. Ecology 95:3035–3045.  https://doi.org/10.1890/13-2387.1 CrossRefGoogle Scholar
  36. Harasti D, Malcolm H, Gallen C, Coleman MA, Jordan A, Knott NA (2015) Appropriate set times to represent patterns of rocky reef fishes using baited video. J Exp Mar Biol Ecol 463:173–180.  https://doi.org/10.1016/j.jembe.2014.12.003 CrossRefGoogle Scholar
  37. Harasti D, McLuckie C, Gallen C, Malcolm H, Moltschaniwskyj N (2018) Assessment of rock pool fish assemblages along a latitudinal gradient. Mar Biodivers 48:1147–1158.  https://doi.org/10.1007/s12526-016-0560-8 CrossRefGoogle Scholar
  38. Harper EM, Peck LS (2016) Latitudinal and depth gradients in marine predation pressure. Global Ecol Biogeogr 25:670–678.  https://doi.org/10.1111/geb.12444 CrossRefGoogle Scholar
  39. Harrell Jr FE, Dupont MC (2018) The Hmisc Packag. R package version 4.1. https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf. Accessed 23 Sept 2019
  40. Heck KL, Wilson KA (1987) Predation rates on decapod crustaceans in latitudinally separated seagrass communities: a study of spatial and temporal variation using tethering techniques. J Exp Mar Biol Ecol 107:87–100.  https://doi.org/10.1016/0022-0981(87)90188-2 CrossRefGoogle Scholar
  41. Hinojosa IA, Green BS, Gardner C, Jeffs A (2015) Settlement and early survival of southern rock lobster, Jasus edwardsii, under climate-driven decline of kelp habitats. ICES J Mar Sci 72:i59–i68.  https://doi.org/10.1093/icesjms/fsu199 CrossRefGoogle Scholar
  42. Jesse S, Stotz W (2003) Spatio-temporal distribution patterns of the crab assemblage in the shallow subtidal of the north Chilean Pacific coast. Crustaceana 75:1161–1200.  https://doi.org/10.1163/156854002321518135 CrossRefGoogle Scholar
  43. Jofré D, Ortiz M, Thiel M (2013) Demography and feeding behavior of the kelp crab Taliepus marginatus in subtidal habitats dominated by the kelps Macrocystis pyrifera or Lessonia trabeculata. Invertebr Biol 132:133–144.  https://doi.org/10.1111/ivb.12021 CrossRefGoogle Scholar
  44. Longo GO, Ferreira CEL, Floeter SR (2014) Herbivory drives large-scale spatial variation in reef fish trophic interactions. Ecol Evol 4:4553–4566.  https://doi.org/10.1002/ece3.1310 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Longo GO, Hay ME, Ferreira CEL, Floeter SR (2018) Trophic interactions across 61 degrees of latitude in the Western Atlantic. Glob Ecol Biogeogr 28:107–117.  https://doi.org/10.1111/geb.12806 CrossRefGoogle Scholar
  46. Macaya EC, Zuccarello GC (2010) Genetic structure of the giant kelp Macrocystis pyrifera along the southeastern Pacific. Mar Ecol Prog Ser 420:103–112.  https://doi.org/10.3354/meps08893 CrossRefGoogle Scholar
  47. Malcolm HA, Gladstone W, Lindfield S, Wraith J, Lynch TP (2007) Spatial and temporal variation in reef fish assemblages of marine parks in New South Wales, Australia—baited video observations. Mar Ecol Prog Ser 350:277–290.  https://doi.org/10.3354/meps07195 CrossRefGoogle Scholar
  48. Manyak-Davis A, Bell TM, Sotka EE (2013) The relative importance of predation risk and water temperature in maintaining Bergmann’s rule in a marine ectotherm. Am Nat 182:347–358.  https://doi.org/10.1086/671170 CrossRefPubMedGoogle Scholar
  49. Martínez EA (1996) Micropopulation differentiation in phenol content and susceptibility to herbivory in the Chilean kelp Lessonia nigrescens (Phaeophyta, Laminariales). Hydrobiologia 326:205–211.  https://doi.org/10.1007/BF00047808 CrossRefGoogle Scholar
  50. Matassa CM, Trussell GC (2015) Effects of predation risk across a latitudinal temperature gradient. Oecologia 177:775–784.  https://doi.org/10.1007/s00442-014-3156-7 CrossRefPubMedGoogle Scholar
  51. Miller LP, Matassa CM, Trussell GC (2014) Climate change enhances the negative effects of predation risk on an intermediate consumer. Glob Chang Biol 20:3834–3844.  https://doi.org/10.1111/gcb.12639 CrossRefPubMedGoogle Scholar
  52. Miller RJ, Lafferty KD, Lamy T, Kui L, Rassweiler A, Reed DC (2018) Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proc R Soc B 285:20172571.  https://doi.org/10.1098/rspb.2017.2571 CrossRefPubMedGoogle Scholar
  53. Moles AT, Bonser SP, Poore AGB, Wallis IR, Foley WJ (2011) Assessing the evidence for latitudinal gradients in plant defense and herbivory. Funct Ecol 25:380–388.  https://doi.org/10.1111/j.1365-2435.2010.01814.x CrossRefGoogle Scholar
  54. Morales C, Antezana T (1983) Diet selection of the Chilean stone crab Homalaspis plana. Mar Biol 77:79–83.  https://doi.org/10.1007/BF00393212 CrossRefGoogle Scholar
  55. Moreira X, Abdala-Roberts L, Parra-Tabla V, Mooney KA (2015) Latitudinal variation in herbivory: influences of climatic drivers, herbivore identity and natural enemies. Oikos 124:1444–1452.  https://doi.org/10.1111/oik.02040 CrossRefGoogle Scholar
  56. Muñoz AA, Ojeda FP (2000) Ontogenetic changes in the diet of the herbivorous Scartichthys viridis in a rocky intertidal zone in central Chile. J Fish Biol 56:986–988.  https://doi.org/10.1111/j.1095-8649.2000.tb00887.x CrossRefGoogle Scholar
  57. Navarrete AH, Lagos NA, Ojeda FP (2014) Latitudinal diversity patterns of Chilean coastal fishes: searching for causal processes. Rev Chil Hist Nat 87:2.  https://doi.org/10.1186/0717-6317-87-2 CrossRefGoogle Scholar
  58. Nielsen KJ, Navarrete SA (2004) Mesoscale regulation comes from the bottom-up: intertidal interactions between consumers and upwelling. Ecol Lett 7:31–41.  https://doi.org/10.1046/j.1461-0248.2003.00542.x CrossRefGoogle Scholar
  59. Ojeda FP, Labra FA, Muñoz AA (2000) Biogeographic patterns of Chilean littoral fishes. Rev Chil Hist Nat 73:625–641.  https://doi.org/10.4067/S0716-078X2000000400007 CrossRefGoogle Scholar
  60. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB (2016) Vegan: community ecology package 10. R package version 2:4–1. https://CRAN.R-project.org/package = vegan. Accessed 23 Sept 2019
  61. Ory NC, Dudgeon D, Dumont CP, Miranda L, Thiel M (2012) Effects of predation and habitat structure on the abundance and population structure of the rock shrimp Rhynchocinetes typus (Caridea) on temperate rocky reefs. Mar Biol 159:2075–2089.  https://doi.org/10.1007/s00227-012-1994-6 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Östman Ö, Eklöf J, Eriksson BK, Olsson J, Moksnes P-O, Bergström U (2016) Top-down control as important as nutrient enrichment for eutrophication effects in North Atlantic coastal ecosystems. J Appl Ecol 53:1138–1147.  https://doi.org/10.1111/1365-2664.12654 CrossRefGoogle Scholar
  63. Pacheco AS, Thiel M, Uribe RA, Campos L, Riascos JM (2013) Effects of sympatric predatory crabs Romaleon polyodon and Cancer plebejus (Decapoda, Brachyura, Cancridae) on sublittoral macrobenthic communities. J Exp Mar Biol Ecol 443:147–154.  https://doi.org/10.1016/j.jembe.2013.02.044 CrossRefGoogle Scholar
  64. Pennings SC, Silliman BR (2005) Linking biogeography and community ecology: latitudinal variation in plant herbivore interaction strength. Ecology 86:2310–2319.  https://doi.org/10.1890/04-1022 CrossRefGoogle Scholar
  65. Pennings SC, Ho C, Salgado CS, Wieski K, Davé N, Kunza AE, Wason EL (2009) Latitudinal variation in herbivore pressure in Atlantic Coast salt marshes. Ecology 90:183–195.  https://doi.org/10.1890/08-0222.1 CrossRefPubMedGoogle Scholar
  66. Pérez-Matus A, Ferry-Graham LA, Cea A, Vásquez JA (2007) Community structure of temperate reef fishes in kelp-dominated subtidal habitats of northern Chile. Mar Freshwater Res 58:1069–1085.  https://doi.org/10.1071/MF06200 CrossRefGoogle Scholar
  67. Pérez-Matus A, Pledger S, Díaz FJ, Ferry LA, Vásquez JA (2012) Plasticity in feeding selectivity and trophic structure of kelp forest associated fishes from northern Chile. Rev Chil Hist Nat 85:29–48.  https://doi.org/10.4067/S0716-078X2012000100003 CrossRefGoogle Scholar
  68. Pérez-Matus A, Sánchez F, González-But JC, Lamb RW (2016) Understory algae associations and predation risk influence broad-scale kelp habitat use in a temperate reef fish. Mar Ecol Prog Ser 559:147–158.  https://doi.org/10.3354/meps11892 CrossRefGoogle Scholar
  69. Pérez-Matus A, Ospina-Alvarez A, Camus PA, Carrasco SA, Fernandez M, Gelcich S, Godoy N, Ojeda FP, Prado LM, Rozbaczylo N, Subida MD, Thiel M, Wieters EA, Navarrete SA (2017a) Temperate rocky subtidal reef community reveals human impacts across the entire food web. Mar Ecol Prog Ser 567:1–16.  https://doi.org/10.3354/meps12057 CrossRefGoogle Scholar
  70. Pérez-Matus A, Carrasco SA, Gelcich S, Fernandez M, Wieters E (2017b) Exploring the effects of fishing pressure and upwelling intensity over subtidal kelp forest communities in Central Chile. Ecosphere 8:e01808.  https://doi.org/10.1002/ecs2.1808 CrossRefGoogle Scholar
  71. Perreault M, Borgeaud IA, Gaymer CF (2014) Impact of grazing by the sea urchin Tetrapygus niger on the kelp Lessonia trabeculata in Northern Chile. J Exp Mar Biol Ecol 453:22–27.  https://doi.org/10.1016/j.jembe.2013.12.021 CrossRefGoogle Scholar
  72. Peterson BJ, Thompson KR, Cowan JH Jr, Heck KL Jr (2001) Comparison of predation pressure in temperate and subtropical seagrass habitats based on chronographic tethering. Mar Ecol Prog Ser 224:77–85.  https://doi.org/10.3354/meps224077 CrossRefGoogle Scholar
  73. Poore AGB, Campbell AH, Coleman RA, Edgar GJ, Jormalainen V, Reynolds PL, Sotka EE, Stachowicz JJ, Taylor RB, Vanderklift MA, Duffy JE (2012) Global patterns in the impact of marine herbivores on benthic primary producers. Ecol Lett 15:912–922.  https://doi.org/10.1111/j.1461-0248.2012.01804.x CrossRefPubMedGoogle Scholar
  74. Quijada PA, Caceres CW (2000) Patrones de abundancia, distribución trófica y distribución espacial del ensamble de peces intermareales de la zona centro-sur de Chile. Rev Chil Hist Nat 73:739–747.  https://doi.org/10.4067/S0716-078X2000000400016 CrossRefGoogle Scholar
  75. Reddin CJ, Docmac F, O’Connor NE, Bothwell JH, Harrod C (2015) Coastal upwelling drives intertidal assemblage structure and trophic ecology. PLoS One 10:e0130789.  https://doi.org/10.1371/journal.pone.0130789 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Reynolds PL, Stachowicz JJ, Hovel K, Boström C, Boyer K, Cusson M, Eklöf JS, Engel FG, Engelen AH, Eriksson BK, Fodrie FJ, Griffin JN, Hereu C, Hori M, Hanley T, Ivanov M, Jorgensen P, Kruschel C, Lee KS, McGlathery K, Moksnes PO, Nakaoka M, O’Connor MI, O’Connor N, Orth RJ, Rossi F, Ruesink J, Sotka E, Tomas F, Unsworth RKF, Whalen MA, Duffy JE (2018) Latitude, temperature and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere. Ecology 99:29–35.  https://doi.org/10.1002/ecy.2064 CrossRefPubMedGoogle Scholar
  77. Rhoades OK, Lonhart SI, Stachowicz JJ (2019) Human-induced reductions in fish predator boldness decrease their predation rates in kelp forests. Proc R Soc B 286:20182745.  https://doi.org/10.1098/rspb.2018.2745 CrossRefPubMedGoogle Scholar
  78. Riquelme-Pérez N, Musrri CA, Stotz WB, Cerda O, Pino-Olivares O, Thiel M (2019) Coastal fish assemblages and predation pressure in northern-central Chilean Lessonia trabeculata kelp forests and barren grounds. PeerJ 7:e6964.  https://doi.org/10.7717/peerj.6964 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Rizzari JR, Frisch AJ, Hoey AS, McCormick MI (2014) Not worth the risk: apex predators suppress herbivory on coral reefs. Oikos 123:829–836.  https://doi.org/10.1111/oik.01318 CrossRefGoogle Scholar
  80. Rodemann JR, Brandl SJ (2017) Consumption pressure in coastal marine environments decreases with latitude and in artificial vs. natural habitats. Mar Ecol Prog Ser 574:167–179.  https://doi.org/10.3354/meps12170 CrossRefGoogle Scholar
  81. Roslin T, Hardwick B, Novotny V, Petry WK, Andrew NR, Asmus A, Barrio IC, Basset Y, Boesing AL, Bonebrake TC, Cameron EK, Dattilo W, Donoso DA, Drozd P, Gray CL, Hik DS, Hill SJ, Hopkins T, Huang S, Koane B, Laird-Hopkins B, Laukkanen L, Lewis OT, Milne S, Mwesige I, Nakamura A, Nell CS, Nichols E, Prokurat A, Sam K, Schmidt NM, Slade A, Slade V, Suchankova A, Teder T, van Nouhuys S, Vandvik V, Weissflog A, Shukovich V, Slade E (2017) Higher predation risk for insect prey at low latitudes and elevations. Science 356:742–744.  https://doi.org/10.1126/science.aaj1631 CrossRefPubMedGoogle Scholar
  82. Ruesink JL, Gross C, Pruitt C, Trimble AC, Donoghue C (2019) Mar Biol 166:75.  https://doi.org/10.1007/s00227-019-3519-z CrossRefGoogle Scholar
  83. Ruz CS, Muth AF, Tala F, Pérez-Matus A (2018) The herbivorous fish, Aplodactylus punctatus, as a potential facilitator of dispersal of kelp, Lessonia trabeculata, in Chile. J Exp Mar Biol Ecol 500:112–119.  https://doi.org/10.1016/j.jembe.2017.12.007 CrossRefGoogle Scholar
  84. Salazar D, Marquis RJ (2012) Herbivore pressure increases toward the equator. Proc Natl Acad Sci USA 109:12616–12620.  https://doi.org/10.1073/pnas.1202907109 CrossRefPubMedGoogle Scholar
  85. Schemske DW, Ellswotrth DS, Staley JT, Wright DJ, Johnson SN (2009) Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol S 40:245–269.  https://doi.org/10.1016/j.cois.2014.09.015 CrossRefGoogle Scholar
  86. Sheppard-Brennand H, Dworjanyn SA, Poore AGB (2017) Global patterns in the effects of predator declines on sea urchins. Ecography 40:1029–1039.  https://doi.org/10.1111/ecog.02380 CrossRefGoogle Scholar
  87. Storz H, Müller KJ, Ehrhart F, Gómez I, Shirley SG, Gessner P, Zimmermann G, Weyand E, Sukhorukov VL, Forst T, Weber MM, Zimmermann H, Kulicke W-M, Zimmermann U (2009) Physicochemical features of ultra-high viscosity alginates. Carbohydr Res 344:985–995.  https://doi.org/10.1016/j.carres.2009.02.016 CrossRefPubMedGoogle Scholar
  88. Stotz WB, Aburto J, Caillaux LM, González SA (2016) Vertical distribution of rocky subtidal assemblages along the exposed coast of north-central Chile. J Sea Res 107:34–47.  https://doi.org/10.1016/j.seares.2015.11.006 CrossRefGoogle Scholar
  89. Thatje S, Heilmayer O, Laudien J (2008) Climate variability and El Niño Southern Oscillation: implications for natural coastal resources and management. Helgoland Mar Res 62:S5–S14.  https://doi.org/10.1007/s10152-008-0104-0 CrossRefGoogle Scholar
  90. Thiel M, Macaya EC, Acuña E, Arntz WE, Bastias H, Brokordt K, Camus PA, Castilla JC, Castro LR, Cortés M, Dumont CP, Escribano R, Fernández M, Gajardo JA, Gaymer CF, Gómez I, González AE, González HE, Haye PA, Illanes JE, Iriarte JL, Lancellotti DA, Luna-Jorquera G, Luxoroi C, Manríquez PH, Marín V, Muñoz P, Navarrete SA, Pérez E, Poulin E, Sellanes J, Sepúlveda HH, Stotz W, Tala F, Thomas A, Vargas CA, Vásquez JA, Vega JMA (2007) The Humboldt Current System of northern-central Chile: oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr Mar Biol 45:195–344CrossRefGoogle Scholar
  91. Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob Ecol Biogeogr 21:272–281CrossRefGoogle Scholar
  92. Uribe RA, Ortiz M, Macaya EC, Pacheco AS (2015) Successional patterns of hard-bottom macrobenthic communities at kelp bed (Lessonia trabeculata) and barren ground sublittoral systems. J Exp Mar Biol Ecol 472:180–188.  https://doi.org/10.1016/j.jembe.2015.08.002 CrossRefGoogle Scholar
  93. Urriago JD, Himmelman JH, Gaymer CF (2011) Responses of the black sea urchin Tetrapygus niger to its sea-star predators Heliaster helianthus and Meyenaster gelatinosus under field conditions. J Exp Mar Biol Ecol 399:17–24.  https://doi.org/10.1016/j.jembe.2011.01.004 CrossRefGoogle Scholar
  94. Urriago JD, Himmelman JH, Gaymer CF (2012) Sea urchin Tetrapygus niger distribution on elevated surfaces represents a strategy for avoiding predatory sea stars. Mar Ecol Prog Ser 444:85–95.  https://doi.org/10.3354/meps09396 CrossRefGoogle Scholar
  95. Valentine JW (1983) Seasonality: Effects in Marine Benthic Communities. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities. Topics in geobiology 3. Springer, Boston, pp 121–156CrossRefGoogle Scholar
  96. Varas E, Ojeda FP (1990) Intertidal fish assemblages of the central Chilean coast: diversity, abundance and trophic patterns. Rev Biol Mar 25:59–70Google Scholar
  97. Vásquez JA, Buschmann AH (1997) Herbivore-kelp interactions in Chilean subtidal communities: a review. Rev Chil Hist Nat 70:41–52Google Scholar
  98. Vergés A, Doropoulos C, Czarnik R, Mcmahon K, Llonch N, Poore AGB (2018) Latitudinal variation in seagrass herbivory: global patterns and explanatory mechanisms. Glob Ecol Biogeogr 27:1068–1079.  https://doi.org/10.1111/geb.12767 CrossRefGoogle Scholar
  99. Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc B 73:3–36.  https://doi.org/10.1111/j.1467-9868.2010.00749.x CrossRefGoogle Scholar
  100. Zarco-Perello S, Wernberg T, Langlois TJ, Vanderklift MA (2017) Tropicalization strengthens consumer pressure on habitat forming seaweeds. Sci Rep UK 7:820.  https://doi.org/10.1038/s41598-017-00991-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Catalina A. Musrri
    • 1
  • Alistair G. B. Poore
    • 2
  • Iván A. Hinojosa
    • 3
    • 4
  • Erasmo C. Macaya
    • 4
    • 5
    • 6
  • Aldo S. Pacheco
    • 7
  • Alejandro Pérez-Matus
    • 8
  • Oscar Pino-Olivares
    • 1
  • Nicolás Riquelme-Pérez
    • 1
  • Wolfgang B. Stotz
    • 1
  • Nelson Valdivia
    • 6
    • 9
  • Vieia Villalobos
    • 1
    • 10
  • Martin Thiel
    • 1
    • 4
    • 11
    Email author
  1. 1.Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  2. 2.Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia
  3. 3.Departamento de Ecología and Centro de Investigación en Biodiversidad y Ambientes Sustentables, Facultad de Ciencias, CIBASUniversidad Católica de la Santísima ConcepciónConcepciónChile
  4. 4.Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI)CoquimboChile
  5. 5.Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  6. 6.Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL)ValdiviaChile
  7. 7.Facultad de Ciencias del Mar y Recursos Biológicos, Instituto de Ciencias Naturales Alexander von HumboldtUniversidad de AntofagastaAntofagastaChile
  8. 8.Subtidal Ecology Laboratory, Estación Costera de Investigaciones Marinas, Facultad de Ciencias BiologicasPontificia Universidad Católica de ChileSantiagoChile
  9. 9.Facultad de Ciencias, Instituto de Ciencias Marinas y LimnológicasUniversidad Austral de ChileValdiviaChile
  10. 10.Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  11. 11.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)CoquimboChile

Personalised recommendations