Advertisement

Marine Biology

, 166:97 | Cite as

Genetic determination of tag loss dynamics in nesting loggerhead turtles: a new chapter in “the tag loss problem”

  • Joseph B. PfallerEmail author
  • Kristina L. Williams
  • Michael G. Frick
  • Brian M. Shamblin
  • Campbell J. Nairn
  • Marc Girondot
Original Paper

Abstract

Capture–mark–recapture studies that fail to account for the frequency and dynamics of marker loss risk generating biased demographic estimates. In this study, we used permanent multilocus genotypes (i.e., “genetic tags”) and a new enhanced tag loss model to quantify the tag loss dynamics for both passive integrated transponder (PIT) and Inconel metal tags applied to loggerhead turtles (Caretta caretta) nesting on Wassaw Island, GA USA. Our results indicate that tag loss is most likely to occur within the nesting season in which tags were applied and is maximal just after tagging (maximum likelihood estimates): 0.00098 PIT tags day−1 and 0.007 Inconel tags day−1. After that, PIT tag loss was negligible and Inconel tag loss remained low but constant at 0.00028 tags day−1, such that after 5 years, the probability of losing one PIT tag was 0.06 and losing at least one Inconel tag was 0.46. The use of genetic tags in this study makes these the first truly accurate estimates of PIT and Inconel tag loss for marine turtles, and the new model of tag loss described herein represents an important advancement in the analytical methods used to estimate and compare tag loss dynamics.

Notes

Acknowledgements

This work would not have been possible without the assistants, volunteers and supporters of the Caretta Research Project, as well as the enthusiastic support of the many beach monitoring projects along the Atlantic coast of the United States north of Florida. We gratefully acknowledge the personnel representing the authors’ institutions and agencies as well as literally hundreds of surveyors representing the NRU beach monitoring projects who have collected samples for this study over the years. We also acknowledge dozens of undergraduate student workers who performed DNA extractions and Billy Kim for genotyping. We also appreciate the support provided by the Georgia Department of Natural Resources, U.S. Fish and Wildlife Service/Savannah Coastal Refuges, and Wassaw Island LLC.

Funding

The authors have no sources of funding to report for this specific project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Human and animal rights statement

All elements of this research followed ethical standards that were approved and permitted by the United States Fish and Wildlife Service and Georgia Department of Natural Resources, Wildlife Resources Division.

Supplementary material

227_2019_3545_MOESM1_ESM.xlsx (21 kb)
Online Resource 1 Detailed summary of tag loss estimates in marine turtles (XLSX 21 kb)

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control 19:716–723.  https://doi.org/10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  2. Alvarado J, Figueroa A, Alarcon P (1988) Black turtle project in Michoacan, Mexico: plastic vs. metal tags. Mar Turt Newsl 42:5–6Google Scholar
  3. Arnason AN, Mills KH (1981) Bias and loss of precision due to tag loss in Jolly-Seber estimates for mark–recapture experiments. Can J Fish Aquat Sci 38:1077–1095.  https://doi.org/10.1139/f81-148 CrossRefGoogle Scholar
  4. Balazs GH (1982) Factors affecting the retention of metal tags on sea turtles. Mar Turt Newsl 20:11–14Google Scholar
  5. Balazs GH (1999) Factors to consider in the tagging of sea turtles. In: Eckert KL, Bjorndal KA, Abreu-Grobois FA, Donnelly M (eds) Research and management techniques for the conservation of sea turtles. IUCN/SSC Marine Turtle Specialist Group Publication, no. 4, pp 1–10Google Scholar
  6. Bellini C, Godfrey MH, Sanches TM (2001) Metal tag loss in wild juvenile hawksbill sea turtles (Eretmochelys imbricata). Herpetol Rev 32:172–174Google Scholar
  7. Bjorndal KA (1980) Demography of the breeding population of the green turtle, Chelonia mydas, at Tortuguero, Costa Rica. Copeia 1980:525–530.  https://doi.org/10.2307/1444530 CrossRefGoogle Scholar
  8. Bjorndal KA, Bolten AB, Lagueux CJ, Chaves A (1996) Probability of tag loss in green turtles nesting at Tortuguero, Costa Rica. J Herpetol 30:566–571.  https://doi.org/10.2307/1565709 CrossRefGoogle Scholar
  9. Bradshaw CJA, Barker RJ, Lloyd SD (2000) Modeling tag loss in New Zealand fur seal pups. J Agric Biol Environ Stat 5:475–485CrossRefGoogle Scholar
  10. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  11. Campbell CL, Lagueux CJ (2005) Survival probability estimates for large juvenile and adult green turtles (Chelonia mydas) exposed to an artisanal marine turtle fishery in the Western Caribbean. Herpetologica 61:91–103.  https://doi.org/10.1655/04-26 CrossRefGoogle Scholar
  12. Carr A (1980) Some problems of sea turtle ecology. Am Zool 20:489–498.  https://doi.org/10.1093/icb/20.3.489 CrossRefGoogle Scholar
  13. Casale P, Freggi D, Salvemini P (2017) Tag loss is a minor limiting factor in sea turtle tagging programs relying on distant tag returns: the case of Mediterranean loggerhead sea turtles. Eur J Wildl Res 63:12.  https://doi.org/10.1007/s10344-016-1059-0 CrossRefGoogle Scholar
  14. Chevalier J, Girondot M (1999) Marine turtles identification in French Guiana: why, where and how? In: Kalb H, Wibbels T (eds) Proceedings of the nineteenth annual symposium of sea turtle biology and conservation. NOAA Technical Memorandum NMFS-SEFSC-443, pp 261–264Google Scholar
  15. Cornelius SE, Robinson DC (1982) Tag recoveries for ridleys nesting in Costa Rica. Mar Turt Newsl 21:2–3Google Scholar
  16. Crouse DT, Crowder LB, Caswell H (1987) A stage-based population model for loggerhead sea turtles and implications for conservation. Ecology 68:1412–1423.  https://doi.org/10.2307/1939225 CrossRefGoogle Scholar
  17. del Jiménez-Quiroz MC, Márquez-Millán R (2002) Pérdida de marcas metálicas en la tortuga marina lora (Lepidochelys kempi) que anida en Rancho Nuevo, Tamaulipas, México. An del Inst Biol Ser Zool 73:193–203Google Scholar
  18. Diefenbach DR, Alt GL (1998) Modeling and evaluation of ear tag loss in black bears. J Wildl Manage 62:1292–1300.  https://doi.org/10.2307/3801993 CrossRefGoogle Scholar
  19. Dutton PH, McDonald D (1994) Use of PIT tags to identify adult leatherbacks. Mar Turt Newsl 67:13–14Google Scholar
  20. Dutton PH, Stewart KR (2013) A method for sampling hatchling sea turtles for the development of a genetic tag. Mar Turt Newsl 138:3–8Google Scholar
  21. Eckert KL, Beggs J (2006) Marine turtle tagging: a manual of recommended practices. WIDECAST Technical Report No. 2 (Revised edition). Beaufort, North CarolinaGoogle Scholar
  22. Eckert KL, Eckert SA (1989) The application of plastic tags to leatherback sea turtles, Dermochelys coriacea. Herpetol Rev 20:90–91Google Scholar
  23. Feldheim KA, Gruber SH, Marignac JRC, Ashley MV (2002) Genetic tagging to determine passive integrated transponder tag loss in lemon sharks. J Fish Biol 61:1309–1313.  https://doi.org/10.1111/j.1095-8649.2002.tb02474.x CrossRefGoogle Scholar
  24. Fontaine CT, Williams TD, Camper JD (1987) Ridleys tagged with passive integrated transponder (PIT). Mar Turt Newsl 41:6Google Scholar
  25. Girondot M (2019a) HelpersMG: Tools for earth meteorological analysis, version 3.5.1. The comprehensive R archive network. https://CRAN.R-project.org/package=HelpersMG
  26. Girondot M (2019b) phenology: tools to manage a parametric function that describes phenology, version 7.3.2. The comprehensive R archive network. https://CRAN.R-project.org/package=phenology
  27. Godley BJ, Broderick AC, Moraghan S (1999) Short-term effectiveness of passive integrated transponder (PIT) tags used in the study of Mediterranean marine turtles. Chelonian Conserv Biol 3:477–479Google Scholar
  28. Gorham JC, Bresette MJ, Peery BD (1998) Comparative tag retention rates for two styles of flipper tags. In: Epperly SP, Braun J (eds) Proceedings of the seventeenth annual symposium of sea turtle biology and conservation. NOAA Technical Memorandum NMFS-SEFSC-415, pp 190–193Google Scholar
  29. Green D (1979) Double tagging of green turtles in the Galapagos Islands. Mar Turt Newsl 13:4–9Google Scholar
  30. Heidelberger P, Welch PD (1983) Simulation run length control in the presence of an initial transient. Oper Res 31:1109–1144CrossRefGoogle Scholar
  31. Henwood TA (1986) Losses of monel flipper tags from loggerhead sea turtles, Caretta caretta. J Herpetol 20:276–279.  https://doi.org/10.2307/1563960 CrossRefGoogle Scholar
  32. Heppell SS, Crowder LB, Menzel TR (1999) Life table analysis of long-lived marine species with implications for conservation and management. In: Musick JA (ed) Life in the slow lane: ecology and conservation of long-lived marine animals. American Fisheries Society, Bethesda, pp 137–148Google Scholar
  33. Kalinowski ST, Taper ML, Marshall TC (2010) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 19:1512.  https://doi.org/10.1111/j.1365-294X.2010.04544.x CrossRefGoogle Scholar
  34. Labrada-Martagón V, Muñoz Tenería FA, Herrera-Pavón R, Negrete-Philippe A (2017) Somatic growth rates of immature green turtles Chelonia mydas inhabiting the foraging ground Akumal Bay in the Mexican Caribbean Sea. J Exp Mar Bio Ecol 487:68–78.  https://doi.org/10.1016/J.JEMBE.2016.11.015 CrossRefGoogle Scholar
  35. Lampa S, Henle K, Klenke R, Hoehn M, Gruber B (2013) How to overcome genotyping errors in non-invasive genetic mark-recapture population size estimation: a review of available methods illustrated by a case study. J Wildl Manage 77:1490–1511.  https://doi.org/10.1002/jwmg.604 CrossRefGoogle Scholar
  36. Liew HC, Chan EH (2002) An analysis of tagging data on the green turtles of Redang Island, Malaysia. In: Mosier A, Foley A, Brost B (eds) Proceedings of the twenty-fourth annual symposium on sea turtle biology and conservation. NOAA Technical Memorandum NMFS-SEFSC-477, p 135Google Scholar
  37. Limpus C (1992) Estimation of tag loss in marine turtle research. Wildl Res 19:457–469.  https://doi.org/10.1071/WR9920457 CrossRefGoogle Scholar
  38. McClenachan L, Ferretti F, Baum JK (2012) From archives to conservation: why historical data are needed to set baselines for marine animals and ecosystems. Conserv Lett 5:349–359.  https://doi.org/10.1111/j.1755-263X.2012.00253.x CrossRefGoogle Scholar
  39. McDonald DL, Dutton PH (1994) Tag retention in leatherback sea turtles (Dermochelys coriacea) at Sandy Point, St. Croix, USVI. In: Schroeder BA, Witherington BE (eds) Proceedings of the thirteenth annual symposium on sea turtle biology and conservation. NOAA Technical Memorandum NMFS-SEFSC-341, p 253Google Scholar
  40. McDonald DL, Dutton PH (1996) Use of PIT tags and photoidentification to revise remigration estimates of leatherback turtles (Dermochelys coriacea) nesting in St. Croix, U.S. Virgin Islands, 1979-1995. Chelonian Conserv Biol 2:148–152Google Scholar
  41. McDonald DL, Dutton PH, Bradner R, Basford S (1996) Use of pineal spot (“pink spot”) photographs to identify leatherback turtles (Dermochelys coriacea). Herpetol Rev 27:11–12Google Scholar
  42. McDonald TL, Amstrup SC, Manly BFJ (2003) Tag loss can bias Jolly-Seber capture-recapture estimates. Wildl Soc Bull 31:814–822Google Scholar
  43. McMahon CR, White GC (2009) Tag loss probabilities are not independent: assessing and quantifying the assumption of independent tag transition probabilities from direct observations. J Exp Mar Biol Ecol 372:36–42.  https://doi.org/10.1016/J.JEMBE.2009.02.006 CrossRefGoogle Scholar
  44. McNeill JB, Schueller AM, Avens L, Hall AG, Goshe LR, Epperly SP (2013) Estimates of tag loss for loggerhead sea turtles (Caretta caretta) in the Western North Atlantic. Herpetol Rev 44:221–226Google Scholar
  45. Mrosovsky N (1976) The tag loss problem. Mar Turt Newsl 1:3–4Google Scholar
  46. Mrosovsky N (1983) Conserving sea turtles. British Herpetological Society, LondonGoogle Scholar
  47. Mrosovsky N, Shettleworth SJ (1982) What double tagging studies can tell us. Mar Turt Newsl 22:11–15Google Scholar
  48. National Research Council (2010) Assessment of sea-turtle status and trends: integrating demography and abundance. National Academies Press, Washington, D.C.Google Scholar
  49. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313.  https://doi.org/10.1093/comjnl/7.4.308 CrossRefGoogle Scholar
  50. Nichols JD, Hines JE (1993) Survival rate estimation in the presence of tag loss using joint analysis of capture-recapture and resighting data. In: Lebreton JD, North PM (eds) Marked individuals in the study of bird population. Birkhauser Verlag, Basel, pp 229–243Google Scholar
  51. Nichols WJ, Seminoff JA (1998) Plastic “Rototags” may be linked to sea turtle bycatch. Mar Turt Newsl 79:20–21Google Scholar
  52. Nichols JD, Bart J, Limpert RJ, Sladen WJL, Hines JE (1992) Annual survival rates of adult and immature eastern population tundra swans. J Wildl Manage 56:485–494.  https://doi.org/10.2307/3808863 CrossRefGoogle Scholar
  53. Nishizawa H, Joseph J, Chew VYC, Liew HC, Chan EH (2018) Assessing tag loss and survival probabilities in green turtles (Chelonia mydas) nesting in Malaysia. J Mar Biol Assoc UK 98:961–972.  https://doi.org/10.1017/S0025315417000224 CrossRefGoogle Scholar
  54. Oosthuizen WC, de Bruyn PJN, Bester MN, Girondot M (2010) Cohort and tag-site-specific tag-loss rates in mark-recapture studies: a southern elephant seal cautionary case. Mar Mammal Sci 26:350–369.  https://doi.org/10.1111/j.1748-7692.2009.00328.x CrossRefGoogle Scholar
  55. Owens D (1977) More on the tag loss problem. Mar Turt Newsl 3:8Google Scholar
  56. Palsbøll PJ (1999) Genetic tagging: contemporary molecular ecology. Biol J Linn Soc 68:3–22.  https://doi.org/10.1111/j.1095-8312.1999.tb01155.x CrossRefGoogle Scholar
  57. Parmenter CJ (1993) A preliminary evaluation of the performance of passive integrated transponders and metal tags in a population study of the flatback sea turtle, Natator depressus. Wildl Res 20:375–381.  https://doi.org/10.1071/WR9930375 CrossRefGoogle Scholar
  58. Parmenter CJ (2003) Plastic flipper tags are inadequate for long-term identification of the flatback sea turtle (Natator depressus). Wildl Res 30:519–521.  https://doi.org/10.1071/WR00123 CrossRefGoogle Scholar
  59. Pearse DE, Eckerman CM, Janzen FJ, Avise JC (2001) A genetic analogue of “mark-recapture” methods for estimating population size: an approach based on molecular parentage assessments. Mol Ecol 10:2711–2718.  https://doi.org/10.1046/j.0962-1083.2001.01391.x CrossRefPubMedGoogle Scholar
  60. Pfaller JB, Chaloupka M, Bolten AB, Bjorndal KA (2018) Phylogeny, biogeography and methodology: a meta-analytic perspective on heterogeneity in adult marine turtle survival rates. Sci Rep 8:5852.  https://doi.org/10.1038/s41598-018-24262-w CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pistorius PA, Bester MN, Kirkman SP, Boveng PL (2000) Evaluation of age- and sex-dependent rates of tag loss in southern elephant seals. J Wildl Manage 64:373–380.  https://doi.org/10.2307/3803235 CrossRefGoogle Scholar
  62. Plummer M, Best N, Cowles K, Vines K, Sarkar D, Bates D, Almond R, Magnusson A (2018) coda: output analysis and diagnostics for MCMC, version 0.16-2. The comprehensive R archive network. https://CRAN.R-project.org/package=coda
  63. Raftery AE, Lewis SM (1992) One long run with diagnostics: implementation strategies for Markov Chain Monte Carlo. Stat Sci 7:493–497CrossRefGoogle Scholar
  64. Reisser J, Proietti M, Kinas P, Sazima I (2008) Photographic identification of sea turtles: method description and validation, with an estimation of tag loss. Endanger Species Res 5:73–82.  https://doi.org/10.3354/esr00113 CrossRefGoogle Scholar
  65. Rice JA (2007) Mathematical statistics and data analysis. Duxbury Press, Pacific GroveGoogle Scholar
  66. Rivalan P, Godfrey MH, Prévot-Julliard AC, Girondot M (2005) Maximum likelihood estimates of tag loss in leatherback sea turtles. J Wildl Manage 69:540–548.  https://doi.org/10.2193/0022-541x(2005)069%5b0540:mleotl%5d2.0.co;2 CrossRefGoogle Scholar
  67. Rosenthal JS (2011) Optimal proposal distributions and adaptive MCMC. In: Brooks S, Gelman A, Jones G, Meng X-L (eds) Handbook of Markov Chain Monte Carlo. Chapman and Hall-CRC, Boca Raton, pp 93–112Google Scholar
  68. Santidrián Tomillo P, Robinson NJ, Sanz-Aguilar A, Spotila JR, Paladino FV, Tavecchia G (2017) High and variable mortality of leatherback turtles reveal possible anthropogenic impacts. Ecology 98:2170–2179.  https://doi.org/10.1002/ecy.1909 CrossRefPubMedGoogle Scholar
  69. Schäuble C, Kennett R, Winderlich S (2006) Flatback turtle (Natator depressus) nesting at Field Island, Kakadu National Park, Northern Territory, Australia, 1990–2001. Chelonian Conserv Biol 5:188–194.  https://doi.org/10.2744/1071-8443(2006)5%5b188:FTNDNA%5d2.0.CO;2 CrossRefGoogle Scholar
  70. Schofield G, Katselidis KA, Dimopoulos P, Pantis JD (2008) Investigating the viability of photo-identification as an objective tool to study endangered sea turtle populations. J Exp Mar Biol Ecol 360:103–108.  https://doi.org/10.1016/J.JEMBE.2008.04.005 CrossRefGoogle Scholar
  71. Schulz JP (1975) Sea turtles nesting in Surinam. Zool Verh 143:1–143Google Scholar
  72. Schwartz FJ (1981) A long term internal tag of sea turtles. Northeast Gulf Sci 5:87–93CrossRefGoogle Scholar
  73. Seber GAF (1973) The estimation of animal abundance and related parameters. Haffner Press, New YorkGoogle Scholar
  74. Shamblin BM, Faircloth BC, Dodd M, Wood-Jones A, Castleberry SB, Carroll JP, Nairn CJ (2007) Tetranucleotide microsatellites from the loggerhead sea turtle (Caretta caretta). Mol Ecol Notes 7:784–787.  https://doi.org/10.1111/j.1471-8286.2007.01701.x CrossRefGoogle Scholar
  75. Shamblin BM, Faircloth BC, Dodd MG, Bagley DA, Ehrhart LM, Dutton PH, Frey A, Nairn CJ (2009) Tetranucleotide markers from the loggerhead sea turtle (Caretta caretta) and their cross-amplification in other marine turtle species. Conserv Genet 10:577–580.  https://doi.org/10.1007/s10592-008-9573-6 CrossRefGoogle Scholar
  76. Shamblin BM, Dodd MG, Williams KL, Frick MG, Bell R, Nairn CJ (2011) Loggerhead turtle eggshells as a source of maternal nuclear genomic DNA for population genetic studies. Mol Ecol Resour 11:110–115.  https://doi.org/10.1111/j.1755-0998.2010.02910.x CrossRefPubMedGoogle Scholar
  77. Shamblin BM, Dodd MG, Griffin DBB, Pate SM, Godfrey MH, Coyne MS, Williams KL, Pfaller JB, Ondich BL, Andrews KM, Boettcher R, Nairn CJ (2017) Improved female abundance and reproductive parameter estimates through subpopulation-scale genetic capture-recapture of loggerhead turtles. Mar Biol 164:138.  https://doi.org/10.1007/s00227-017-3166-1 CrossRefGoogle Scholar
  78. Siniff DB, Ralls K (1991) Reproduction, survival and tag loss in California sea otters. Mar Mammal Sci 7:211–299.  https://doi.org/10.1111/j.1748-7692.1991.tb00099.x CrossRefGoogle Scholar
  79. Summers TM, Jones TT, Martin SL, Hapdei JR, Ruak JK, Lepczyk CA (2017) Demography of marine turtles in the nearshore environments of the Northern Mariana Islands. Pac Sci 71:269–286.  https://doi.org/10.1109/26.58758 CrossRefGoogle Scholar
  80. Troëng S, Chaloupka M (2007) Variation in adult annual survival probability and remigration intervals of sea turtles. Mar Biol 151:1721–1730.  https://doi.org/10.1007/s00227-007-0611-6 CrossRefGoogle Scholar
  81. Troëng S, Mangel J, Reyes C (2003) Comparison of Monel 49 and Inconel 681 flipper tag loss in green turtles, Chelonia mydas, nesting at Tortuguero, Costa Rica. In: Seminoff JA (ed) Proceedings of the twenty-fourth annual symposium on sea turtle biology and conservation. NOAA Technical Memorandum NMFS-SEFSC-503, pp 121–122Google Scholar
  82. Unger SD, Burgmeier NG, Williams RN (2012) Genetic markers reveal high PIT tag retention rates in giant salamanders (Cryptobranchus alleganiensis). Amphib Reptil 33:313–317.  https://doi.org/10.1163/156853812X641712 CrossRefGoogle Scholar
  83. van Dam RP, Diez CE (1999) Differential tag retention in Caribbean hawksbill turtles. Chelonian Conserv Biol 3:225–229Google Scholar
  84. Velez-Espino A, Pheasey H, Araújo A, Fernández LM (2018) Laying on the edge: demography of green sea turtles (Chelonia mydas) nesting on Playa Norte, Tortuguero, Costa Rica. Mar Biol 165:53.  https://doi.org/10.1007/s00227-018-3305-3 CrossRefGoogle Scholar
  85. Venerus LA, Irigoyen AJ, Parma AM (2013) Assessment of biases in the estimation of tag shedding rates through a mark-resight experiment. Fish Res 140:133–148.  https://doi.org/10.1016/j.fishres.2012.12.015 CrossRefGoogle Scholar
  86. Wald A (1949) Note on the consistency of the maximum likelihood estimate. Ann Math Stat 20:595–601CrossRefGoogle Scholar
  87. Wetherall JA (1982) Analysis of double-tagging experiments. Fish Bull 80:687–701.  https://doi.org/10.1139/f80-012 CrossRefGoogle Scholar
  88. Williams KL, Frick MG (2001) Results from the long-term monitoring of nesting loggerhead sea turtles (Caretta caretta) on Wassaw Island, Georgia: 1973–2000. NOAA Technical Memorandum NMFS-SEFSC-446, pp 1–32Google Scholar
  89. Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations: modeling, estimation, and decision making. Academic Press, San DiegoGoogle Scholar
  90. Wyneken J, Epperly SP, Higgins B, Erin McMichael, Merigo C, Flanagan JP (2010) PIT tag migration in sea turtle flippers. Herpetol Rev 41:448–454Google Scholar
  91. Xiao Y (1996) A general model for estimating tag-specific shedding rates and tag interactions from exact or pooled times at liberty for a double tagging experiment. Can J Fish Aquat Sci 53:1852–1861CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Caretta Research ProjectSavannahUSA
  2. 2.Archie Carr Center for Sea Turtle Research and Department of BiologyUniversity of FloridaGainesvilleUSA
  3. 3.Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensUSA
  4. 4.Laboratoire Écologie, Systématique, Évolution, Centre National de la Recherche ScientifiqueUniversité Paris-Sud, AgroParisTech, Université Paris SaclayOrsayFrance

Personalised recommendations