Marine Biology

, 166:92 | Cite as

Beyond tides: surge-dominated submersion regimes on rocky shores of central Chile

  • Gabriela FloresEmail author
  • Rodrigo Cienfuegos
  • Sergio A. Navarrete
Original Paper


By definition, intertidal organisms are exposed to fluctuations between submersion and exposure to air due to the variation in the sea level caused, primarily, by tides and waves. Such submersion regimes have great consequences on the evolution, physiology, behavior, and ecology of intertidal marine organisms, but, paradoxically, our quantitative knowledge about submersion regimes is extremely limited, especially in wave-exposed shores. We here quantify submersion regimes during summer (February 2012) in a wave-exposed rocky shore of central Chile (Las Cruces, 33°30′S, 71°38′W) using a remote sensing method that permits high-frequency measurements. We provide metrics of submersion for the high (barnacle), mid (mussel) and low (upper kelp) intertidal zones and developed statistical models to hindcast submersion regimes from tide and wave data. Results revealed that the submersion consists solely of numerous but brief submersion events produced by waves. The three intertidal zones therefore experience intermittent submersion most of the time, and submersion events are so brief that, in these three zones, emersion predominates over submersion. In this region, submersion cannot be determined from tidal charts, because most of the intertidal zone lies above the highest tidal level, but still the tidal cycle strongly modulates submersion regimes, by altering wave swash into the shore. Combined statistical models including tides and waves are necessary to reproduce the most biologically relevant aspects of submersion. We discuss the consequences of these findings for our understanding of adaptation to intertidal life, and the design of studies on responses to current environmental variability and future climate change.



We are thankful to many friends at ECIM who assisted us in the field and provided good company during the long hours of analysis. Funding for this study comes from the Laboratorio Internacional en Cambio Global, LINCGlobal, CONICYT PIA/BASAL FB0002 and MERIC—Marine Energy Research & Innovation Center (14CEI2-28228). Additional funding was provided by Fondecyt #1160289 to SAN. This paper is in partial fulfillment of the Ph.D. degree of G. Flores, who acknowledges financial support of the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) through a scholarship and thesis Grant (AT 24091115). Finally, we thank the reviewers B. Helmuth and M. Kavanaugh for their constructive criticism and suggestions that greatly improved the discussion of this article.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflicts of interest in connection with this study.

Ethical standards

This research was realized inside the marine reserve of the Estación Costera de Investigaciones Marinas (ECIM), with authorization from the ECIM Director. No organisms were used for the experiments.

Supplementary material

227_2019_3539_MOESM1_ESM.pdf (406 kb)
Supplementary material 1 (PDF 407 kb)


  1. Alveal K (1971) El ambiente costero de Montemar y su expresión biológica. Rev Biol Mar 14(3):85–119Google Scholar
  2. Barnes RSK, Hughes RN (1988) An introduction to marine ecology. Oxford Blackwell, OxfordGoogle Scholar
  3. Bird CE, Franklin EC, Smith CM, Toonen RJ (2013) Between tide and wave marks: a unifying model of physical zonation on littoral shores. PeerJ 1:e154. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blanchette CA, Helmuth B, Gaines SD (2007) Spatial patterns of growth in the mussel, Mytilus californianus, across a major oceanographic and biogeographic boundary at Point Conception, California, USA. J Exp Mar Bio Ecol 340:126–148. CrossRefGoogle Scholar
  5. Blanchette CA, O’Donnell MJ, Stewart HL (2008) Waves as an ecological process. In: Jørgensen SE, Brian D (eds) Encyclopedia of ecology. Elsevier Science, New YorkGoogle Scholar
  6. Bordeyne F, Migne A, Davoult D (2017) Variation of fucoid community metabolism during the tidal cycle: insights from in situ measurements of seasonal carbon fluxes during emersion and immersion. Limnol Oceanogr 62:2418–2430. CrossRefGoogle Scholar
  7. Broitman BR, Navarrete SA, Smith F, Gaines SD (2001) Geographic variation of southeastern Pacific intertidal communities. Mar Ecol Prog Ser 224:21–34. CrossRefGoogle Scholar
  8. Cancino J, Santelices B (1984) Importancia ecológica de los discos adhesivos de Lessonia nigrescens Bory (Phaeophyta) en Chile central. Rev Chil Hist Nat 57:22–33Google Scholar
  9. Castilla JC (1981) Perspectivas de investigación en estructura y dinámica de comunidades intermareales rocosas de Chile central. II. Depredadores de alto nivel trófico. Medio Ambiente 5:190–215Google Scholar
  10. Castilla JC, Durán LR (1985) Human exclusion from the rocky intertidal zone of central Chile: the effects on Concholepas concholepas (Gastropoda). Oikos 45(3):391–399. CrossRefGoogle Scholar
  11. Castilla JC, Paine RT (1987) Predation and community organization on Eastern Pacific, temperate zone, rocky intertidal shores. Rev Chil Hist Nat 60(2):131–151Google Scholar
  12. Castilla JC, Luxoro C, Navarrete SA (1989) Galleries of the crabs Acanthocyclus under intertidal mussel beds: their effects on the use of primary substratum. Rev Chil Hist Nat 62:199–204Google Scholar
  13. Chan BKK, Morritt D, De Pirro M, Leung KMY, Williams GA (2006) Summer mortality: effects on the distribution and abundance of the acorn barnacle Tetraclita japonica on tropical shores. Mar Ecol Prog Ser 328:195–204. CrossRefGoogle Scholar
  14. Colman J (1933) The nature of intertidal zonation in plants and animals. J Mar Biol Assoc United Kingdom 18(2):435–476. CrossRefGoogle Scholar
  15. Connell JH (1961a) Effects of competition, predation by Thais lapillus, and other factors on natural populations of the barnacle Balanus balanoides. Ecol Monogr 31(1):61–104. CrossRefGoogle Scholar
  16. Connell JH (1961b) The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42(4):710–723. CrossRefGoogle Scholar
  17. Contreras-Porcia L, Callejas S, Thomas D, Sordet C, Pohnert G, Contreras A, Lafuente A, Flores-Molina MR, Correa JA (2012) Seaweeds early development: detrimental effects of desiccation and attenuation by algal extracts. Planta 235:337–348. CrossRefPubMedGoogle Scholar
  18. Davenport J, Davenport JL (2005) Effects of shore height, wave exposure and geographical distance on thermal niche width of intertidal fauna. Mar Ecol Prog Ser 292:41–50. CrossRefGoogle Scholar
  19. Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32(2):197–211. CrossRefGoogle Scholar
  20. Denny M (1988) Biology and the mechanics of the wave-swept environment. Princeton University Press, PrincetonCrossRefGoogle Scholar
  21. Denny M (1993) Air and water: the biology and physics of life’s media. Princeton University Press, PrincetonGoogle Scholar
  22. Denny M (1995a) Predicting physical disturbance: mechanistic approaches to the study of survivorship on wave-swept shores. Ecol Monogr 65(4):371–418. CrossRefGoogle Scholar
  23. Denny M (1995b) Survival in the surf zone. Am Sci 83(2):166–173Google Scholar
  24. Denny M (2012) Biophysics, bioenergetics and mechanistic approaches to ecology. J Exp Biol 215:871. CrossRefPubMedGoogle Scholar
  25. Denny MW, Harley CDG (2006) Hot limpets: predicting body temperature in a conductance-mediated thermal system. J Exp Biol 209(14):2409–2419. CrossRefPubMedGoogle Scholar
  26. Dobrynin M, Murawski J, Baehr J, Ilyina T (2015) Detection and attribution of climate change signal in ocean wind waves. J Clim 28(4):1578–1591. CrossRefGoogle Scholar
  27. Doty MS (1946) Critical tidal factors that are correlated with the distribution of marine algae and other organisms along the Pacific coast. Ecology 27:315–328. CrossRefGoogle Scholar
  28. Fernandez M, Jaramillo E, Marquet PA, Moreno CA, Navarrete SA, Ojeda FP, Valdovinos CR, Vasquez JA (2000) Diversity, dynamics and biogeography of Chilean benthic nearshore ecosystems: an overview and guidelines for conservation. Rev Chil Hist Nat 73(4):797–830. CrossRefGoogle Scholar
  29. Finke GR, Navarrete SA, Bozinovic F (2007) Tidal regimes of temperate coasts and their influences on aerial exposure for intertidal organisms. Mar Ecol Prog Ser 343:57–62. CrossRefGoogle Scholar
  30. Finke GR, Bozinovic F, Navarrete SA (2009) A mechanistic model to study the thermal ecology of a southeastern pacific dominant intertidal mussel and implications for climate change. Physiol Biochem Zool 82(4):303–313. CrossRefPubMedGoogle Scholar
  31. Fitzgerald-Dehoog L, Browning J, Allen BJ (2012) Food and heat stress in the California mussel: evidence for an energetic trade-off between survival and growth. Biol Bull 223(2):205–216. CrossRefPubMedGoogle Scholar
  32. Flores G, Aguilera JC, Almar R, Cienfuegos R, Navarrete SA (2016) A new remote sensing method for high-resolution quantification of submersion regimes in wave exposed shores. Limnol Oceanogr-Meth 14(11):736–749. CrossRefGoogle Scholar
  33. Flores-Molina MR, Thomas D, Lovazzano C, Nunez A, Zapata J, Kumar M, Correa JA, Contreras-Porcia L (2014) Desiccation stress in intertidal seaweeds: effects on morphology, antioxidant responses and photosynthetic performance. Aquat Bot 113:90–99. CrossRefGoogle Scholar
  34. Gilman SE, Harley CDG, Strickland DC, Vanderstraeten O, O’Donnell MJ, Helmuth B (2006) Evaluation of effective shore level as a method of characterizing intertidal wave exposure regimes. Limnol Oceanogr 4:448–457. CrossRefGoogle Scholar
  35. Häder DP, Figueroa FL (1997) Photoecophysiology of marine macroalgae. Photochem Photobiol 66(1):1–14. CrossRefGoogle Scholar
  36. Harley C (2007) Zonation. In: Denny MW, Steven DG (eds) Encyclopedia of tidepools and rocky shores. University of California Press, BerkeleyGoogle Scholar
  37. Harley CDG (2008) Tidal dynamics, topographic orientation, and temperature-mediated mass mortalities on rocky shores. Mar Ecol Prog Ser 371:37–46. CrossRefGoogle Scholar
  38. Harley CDG, Helmuth BST (2003) Local- and regional-scale effects of wave exposure, thermal stress, and absolute versus effective shore level on patterns of intertidal zonation. Limnol Oceanogr 48(45):1498–1508. CrossRefGoogle Scholar
  39. Helmuth BST (1998) Intertidal mussel microclimates: predicting the body temperature of a sessile invertebrate. Ecol Monogr 68(1):51–74.;2 CrossRefGoogle Scholar
  40. Helmuth B (1999) Thermal biology of rocky intertidal mussels: quantifying body temperatures using climatological data. Ecology 80(1):15–34.;2 CrossRefGoogle Scholar
  41. Helmuth B, Schneider KR (2007) Heat and temperature, patterns of. In: Denny MW, Steven DG (eds) Encyclopedia of tidepools and rocky shores. University of California Press, BerkeleyGoogle Scholar
  42. Helmuth B, Kingsolver JG, Carrington E (2005) Biophysics, physiological ecology, and climate change: does mechanism matter? Annu Rev Physiol 67:177–201. CrossRefPubMedGoogle Scholar
  43. Helmuth B, Mieszkowska N, Moore P, Hawkins SJ (2006) Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst 37:373–404. CrossRefGoogle Scholar
  44. Helmuth B, Yamane L, Lalwani S, Matzelle A, Tockstein A, Gao N (2011) Hidden signals of climate change in intertidal ecosystems: what (not) to expect when you are expecting. J Exp Mar Bio Ecol 400:191–199. CrossRefGoogle Scholar
  45. Hofmann G (2007) Cold stress. In: Denny MW, Steven DG (eds) Encyclopedia of tidepools and rocky shores. University of California Press, BerkeleyGoogle Scholar
  46. Jenkins SR (2005) Larval habitat selection, not larval supply, determines settlement patterns and adult distribution in two chthamalid barnacles. J Anim Ecol 74:893–904. CrossRefGoogle Scholar
  47. Kavanaugh MT, Nielsen KJ, Chan FT, Menge BA, Letelier RM, Goodrich LM (2009) Experimental assessment of the effects of shade on an intertidal kelp: do phytoplankton blooms inhibit growth of open-coast macroalgae? Limnol Oceanogr 54(1):276–288. CrossRefGoogle Scholar
  48. Kearney M, Simpson SJ, Raubenheimer D, Helmuth B (2010) Modelling the ecological niche from functional traits. Philos Trans R Soc Lond B Biol Sci 365:3469–3483. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kefi S, Berlow EL, Wieters EA, Joppa LN, Wood SA, Brose U, Navarrete SA (2015) Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96(1):291–303. CrossRefGoogle Scholar
  50. Kish NE, Helmuth B, Wethey DS (2016) Physiologically grounded metrics of model skill: a case study estimating heat stress in intertidal populations. Conserv Physiol 4(1):cow038. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lagos NA, Navarrete SA, Veliz F, Masuero A, Castilla JC (2005) Meso-scale spatial variation in settlement and recruitment of intertidal barnacles along the coast of central Chile. Mar Ecol Prog Ser 290:165–178. CrossRefGoogle Scholar
  52. Leigh EG, Paine RT, Quinn JF, Suchanek TH (1987) Wave energy and intertidal productivity. Proc Natl Acad Sci USA 84(5):1314–1318. CrossRefPubMedGoogle Scholar
  53. Levinton JS (2001) Marine biology: function, biodiversity, ecology. Oxford University Press, New YorkGoogle Scholar
  54. Lewis JR (1964) The ecology of rocky shores. English Universities Press, LondonGoogle Scholar
  55. Li NK, Denny MW (2004) Limits to phenotypic plasticity: flow effects on barnacle feeding appendages. Biol Bull 206(3):121–124. CrossRefPubMedGoogle Scholar
  56. Lima FP, Wethey DS (2009) Robolimpets: measuring intertidal body temperatures using biomimetic loggers. Limnol Oceanogr-Meth 7:347–353. CrossRefGoogle Scholar
  57. Little C, Kitching JA (1996) The biology of rocky shores. Oxford University Press, OxfordGoogle Scholar
  58. Lopez-Cristoffanini C, Tellier F, Otaiza R, Correa JA, Contreras-Porcia L (2013) Tolerance to air exposure: a feature driving the latitudinal distribution of two sibling kelp species. Bot Mar 56:431–440. CrossRefGoogle Scholar
  59. Lucero F, Catalan PA, Ossandon A, Beya J, Puelma A, Zamorano L (2017) Wave energy assessment in the central-south coast of Chile. Renew Energ 114:120–131. CrossRefGoogle Scholar
  60. Madsen TV, Marbely SC (1990) A comparison of air and water environments for photosynthesis by the intertidal alga Fucus spiralis (Phaeophyta). J Physcol 26:24–30. CrossRefGoogle Scholar
  61. Matzelle AJ, Sara G, Montalto V, Zippay M, Trussell GC, Helmuth B (2015) A bioenergetics framework for integrating the effects of multiple stressors: opening a “black box” in climate change research. Am Malacol Bull 33(1):150–160. CrossRefGoogle Scholar
  62. McQuaid CD (1981) The establishment and maintenance of vertical size gradients in populations of Littorina Africana knysnaensis (Philippi) on an exposed rocky shore. J Exp Mar Bio Ecol 54:77–89. CrossRefGoogle Scholar
  63. Mislan KAS, Wethey DS, Helmuth B (2009) When to worry about the weather: role of tidal cycle in determining patterns of risk in intertidal ecosystems. Glob Chang Biol 15:3056–3065. CrossRefGoogle Scholar
  64. Mislan KAS, Blanchette CA, Broitman BR, Washburn L (2011) Spatial variability of emergence, splash, surge, and submergence in wave-exposed rocky-shore ecosystems. Limnol Oceanogr 56(3):857–866. CrossRefGoogle Scholar
  65. Morales CE, Hormazabal S, Andrade I, Correa-Ramirez MA (2013) Time-space variability of chlorophyll-a and associated physical variables within the region off central-southern Chile. Remote Sens 5(11):5550–5571. CrossRefGoogle Scholar
  66. Narvaez DA, Poulin E, Leiva G, Hernandez E, Castilla JC, Navarrete SA (2004) Seasonal and spatial variation of nearshore hydrographic conditions in central Chile. Cont Shelf Res 24(2):279–292. CrossRefGoogle Scholar
  67. Navarrete SA, Castilla JC (2003) Experimental determination of predation intensity in an intertidal predator guild: dominant versus subordinate prey. Oikos 100:251–262. CrossRefGoogle Scholar
  68. Navarrete SA, Wieters EA, Broitman BR, Castilla JC (2005) Scales of benthic-pelagic and the intensity of species interactions: from recruitment limitation to top-down control. Proc Natl Acad Sci USA 102:18046–18051. CrossRefPubMedGoogle Scholar
  69. Navarrete SA, Largier JL, Vera G, Tapia FJ, Parragué M, Ramos E, Shinen JL, Stuardo CA, Wieters EA (2015) Tumbling under the surf: wave-modulated settlement of intertidal mussels and the continuous settlement-relocation model. Mar Ecol Prog Ser 520:101–121. CrossRefGoogle Scholar
  70. Nielsen KJ, Blanchette CA, Menge BA, Lubchenco J (2006) Physiological snapshot reflect ecological performance of the sea palm, Postelsia palmaeformis (Phaeophyceae) across intertidal elevation and exposure gradients. J Phycol 42:548–559. CrossRefGoogle Scholar
  71. Paine RT, Castillo JC, Cancino J (1985) Perturbation and recovery patterns of starfish-dominated intertidal assemblages in Chile, New Zealand, and Washington State. Am Nat 125(5):679–691. CrossRefGoogle Scholar
  72. Prado L, Castilla JC (2006) The bioengineer Perumytilus purpuratus (Mollusca: Bivalvia) in central Chile: biodiversity, habitat structural complexity and environmental heterogeneity. J Mar Biol Assoc UK 86(2):417–421. CrossRefGoogle Scholar
  73. Raffaelli DG, Hawkins SJ (1999) Intertidal ecology. Kluwer Academic Publishers, AmsterdamGoogle Scholar
  74. Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev S, Johnson GC, Josey SA, Kostianoy A, Mauritzen C, Roemmich D, Talley LD, Wang F (2013) Observations: Ocean. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  75. Ricketts EF, Calvin J (1939) Between pacific tides. Stanford University Press, StanfordGoogle Scholar
  76. Rojas JM, Castillo SB, Escobar JB, Shinen JL, Bozinovic F (2013) Huddling up in a dry environment: the physiological benefits of aggregation in an intertidal gastropod. Mar Biol 160:1119–1126. CrossRefGoogle Scholar
  77. Ryan SE, Porth LS (2007) A tutorial on the piecewise regression approach applied to bedload transport data. Gen Tech. RMRS-GTR-189. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
  78. Santelices B (1980a) Muestreo cuantitativo de comunidades intermareales de Chile central. Arch Biol Med Exp 13:413–424PubMedGoogle Scholar
  79. Santelices B (1980b) Phytogeographic characterization of the temperate coast of Pacific South America. Phycologia 19(1):1–12. CrossRefGoogle Scholar
  80. Santelices B (1990) Patterns of organizations of intertidal and shallow subtidal vegetation in wave exposed habitats of central Chile. Hydrobiologia 192(1):35–57. CrossRefGoogle Scholar
  81. Santelices B, Ojeda FP (1984) Recruitment, growth and survival of Lessonia nigrescens (Phaeophyta) at various tidal levels in exposed habitats of central Chile. Mar Ecol Prog Ser 19:73–82. CrossRefGoogle Scholar
  82. Sara G, Kearney M, Helmuth B (2011) Combining heat-transfer and energy budget models to predict thermal stress in Mediterranean intertidal mussels. Chem Ecol 27(2):135–145. CrossRefGoogle Scholar
  83. Sara G, Palmeri V, Rinaldi A, Montalto V, Helmuth B (2013) Predicting biological invasions in marine habitats through eco-physiological mechanistic models: a case study with the bivalve Brachidontes pharaonis. Divers Distrib 19(10):1235–1247. CrossRefGoogle Scholar
  84. Sara G, Rinaldi A, Montalto V (2014) Thinking beyond organism energy use: a trait-based bioenergetic mechanistic approach for predictions of life history traits in marine organisms. Mar Ecol 35:506–515. CrossRefGoogle Scholar
  85. Schmidt-Nielsen K (1979) Animal physiology: adaptation and environment, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  86. Schoch GC, Menge BA, Allison G, Kavanaugh M, Thompson SA, Wood SA (2006) Fifteen degrees of separation: latitudinal gradients of rocky intertidal biota along the California current. Limnol Oceanogr 51(6):2564–2585. CrossRefGoogle Scholar
  87. Shinen JL, Navarrete SA (2010) Coexistence and intertidal zonation of chthamalid barnacles along central Chile: interference competition or a lottery for space? J Exp Mar Bio Ecol 392:176–187. CrossRefGoogle Scholar
  88. Shinen JL, Navarrete SA (2014) Lottery coexistence on rocky shores: weak niche differentiation or equal competitors engaged in neutral dynamics? Am Nat 183(3):342–362. CrossRefPubMedGoogle Scholar
  89. Simpfendörfer RW, Vial MV, López DA, Verdala M, González ML (1995) Relationship between the aerobic and anaerobic metabolic capacities and the vertical distribution of three intertidal sessile invertebrates: Jehlius cirratus (Darwin) (Cirripedia), Perumytilus purpuratus (Lamarck) (Bivalvia) and Mytilus chilensis (Hupé). Comp Biochem Physiol 111B(4):615–623. CrossRefGoogle Scholar
  90. Sokolova IM, Portner HO (2001) Physiological adaptations to high intertidal life involve improved water conservation abilities and metabolic rate depression in Littorina saxatilis. Mar Ecol Prog Ser 224:171–186. CrossRefGoogle Scholar
  91. Somero GN (2002) Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integr Comp Biol 42:780–789. CrossRefPubMedGoogle Scholar
  92. Somero GN (2012) The physiology of global change: linking patterns to mechanisms. Annu Rev Mar Sci 4(4):39–61. CrossRefGoogle Scholar
  93. Stephenson TA, Stephenson A (1949) The universal features of zonation between tide-marks on Rocky Coasts. J Ecol 37(2):289–305. CrossRefGoogle Scholar
  94. Stillman JH, Somero GN (1996) Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distribution. J Exp Biol 199:1845–1855PubMedGoogle Scholar
  95. Stillman JH, Somero GN (2000) A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny. Physiol Biochem Zool 73(2):200–208. CrossRefPubMedGoogle Scholar
  96. Tapia FJ, Largier JL, Castillo M, Wieters EA, Navarrete SA (2014) Latitudinal discontinuity in thermal conditions along the nearshore of central-northern Chile. PLoS One 9(10):e110841. CrossRefPubMedPubMedCentralGoogle Scholar
  97. Thiel M, Macaya EC, Acuna E, Arntz WE, Bastias H, Brokordt K, Camus PA, Castilla JC, Castro LR, Cortes M, Dumont CP, Escribano R, Fernandez M, Gajardo JA, Gaymer CF, Gomez I, Gonzalez AE, Gonzalez HE, Haye PA, Illanes J-E, Iriarte JL, Lancellotti DA, Luna-Jorquerai G, Luxoroi C, Manriquez PH, Marin V, Munoz P, Navarrete SA, Perez E, Poulin E, Sellanes J, Sepulveda HH, Stotz W, Tala F, Thomas A, Vargas CA, Vasquez JA, Vega JMA (2007) The Humboldt current system of northern and central Chile. Oceanogr Mar Biol 45:195–344CrossRefGoogle Scholar
  98. Vasquez JA, Santelices B (1984) Comunidades de macroinvertebrados en discos adhesivos de Lessonia nigrescens Bory (Phaeophyta) en Chile central. Rev Chil Hist Nat 57:131–154Google Scholar
  99. Wang XLL, Feng Y, Swail VR (2015) Climate change signal and uncertainty in CMIP5-based projections of global ocean surface wave heights. J Geophys Res 120(5):3859–3871. CrossRefGoogle Scholar
  100. Weidberg N, Bularz B, López-Rodríguez S, Navarrete SA (2018) Wave-Modulation of mussel daily settlement at contrasting rocky shores in central Chile: topographic modulation of transport mechanisms in the surf zone. Mar Ecol Prog Ser 606:39–53. CrossRefGoogle Scholar
  101. Wethey DS (2002) Biogeography, competition, and microclimate: the barnacle Chthamalus fragilis in New England. Integr Comp Biol 42:872–880. CrossRefPubMedGoogle Scholar
  102. Wethey DS, Brin LD, Helmuth B, Mislan KAS (2011) Predicting intertidal organism temperatures with modified land surface models. Ecol Modell 222(19):3568–3576. CrossRefGoogle Scholar
  103. Wieters EA (2005) Upwelling control of positive interactions over mesoscales: a new link between bottom-up and top-down processes on rocky shores. Mar Ecol Prog Ser 301:43–54. CrossRefGoogle Scholar
  104. Wieters EA, Kaplan DM, Navarrete SA, Sotomayor A, Largier J, Nielsen KJ, Veliz F (2003) Alongshore and temporal variability in chlorophyll a concentration in Chilean nearshore waters. Mar Ecol Prog Ser 249:93–105. CrossRefGoogle Scholar
  105. Williams SL, Dethier MN (2005) High and dry: variation in net photosynthesis of the intertidal seaweed Fucus gardneri. Ecology 86(9):2373–2379. CrossRefGoogle Scholar
  106. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gabriela Flores
    • 1
    • 2
    • 3
    Email author
  • Rodrigo Cienfuegos
    • 4
    • 5
    • 6
  • Sergio A. Navarrete
    • 1
    • 2
    • 3
    • 5
  1. 1.Center of Applied Ecology and Sustainability (CAPES)SantiagoChile
  2. 2.Estación Costera de Investigaciones Marinas (ECIM)Pontificia Universidad Católica de ChileLas CrucesChile
  3. 3.LINCGlobalPontificia Universidad Católica de ChileSantiagoChile
  4. 4.Departamento de Ingeniería Hidráulica y Ambiental, Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
  5. 5.Marine Energy Research and Innovation Center (MERIC)SantiagoChile
  6. 6.Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), CONICYT/FONDAP/1511017SantiagoChile

Personalised recommendations