Advertisement

Marine Biology

, 166:61 | Cite as

Trophic ecology of Scopoli’s shearwaters during breeding in the Zembra Archipelago (northern Tunisia)

  • Intissar ThabetEmail author
  • Karen Bourgeois
  • François Le Loc’h
  • Aida Abdennadher
  • Jean-Marie Munaron
  • Manel Gharsalli
  • Mohamed Salah Romdhane
  • Frida Ben Rais Lasram
Original paper

Abstract

While breeding, seabirds are central-place foragers requiring resources to sustain high-energy requirements. Therefore, during this period, they are particularly sensitive to food-resource availability, which can vary within and between years. Intra- and inter-annual variations in Scopoli’s shearwater (Calonectris diomedea) trophic ecology were investigated at its largest colony (Zembra Island, 37°07′33″N, 10°48′23″E, Mediterranean Sea). Carbon and nitrogen isotope values were analysed in the blood (adults and chicks) and feathers (adult wing) during pre-laying, incubation, and chick-rearing in 2015 and 2016 to assess variations in stable isotope composition, isotopic niches, trophic levels, and diet inferred from isotope mixing models. Scopoli’s shearwaters showed variations in isotopes throughout the breeding season and among years, with incubation showing the highest δ13C and δ15N values, trophic levels, inter-annual isotopic niche consistency, and the most specific and narrowest isotopic niche. The difference in blood δ13C values between adults and chicks suggested trophic habitat segregation: adults feed inshore, while chicks are fed more oceanic prey. Stable-isotope mixing models based on three potential prey groups revealed that the diet could consist mainly of pelagic fish and crustaceans throughout the breeding season, whereas non-pelagic fish and cephalopods could be consumed more sporadically, mainly during incubation. Feather δ15N values suggested that the adult diets contained more zooplankton in 2014. These results demonstrated the Scopoli’s shearwater trophic ecology plasticity in response to the variable nutritional demands of breeding phases and changes in prey availability. Scopoli’s shearwaters may, thus, be valuable bio-indicators of small pelagic fish populations considered critically depleted in the Mediterranean.

Notes

Acknowledgements

The authors would like to acknowledge the financial support from the Fondation Total pour la Biodiversité through the TRIBAL project (“TRophic ecology and Impacts of Bycatch on the Avifauna communities of Zembra archipelago”). The authors also thank the staff of the Agence de Protection et d’Aménagement du Littoral (APAL) for providing authorisations for access to and sampling in the Zembra Archipelago marine protected area and for their help with logistical aspects, particularly Anis Zarrouk, Mahdi Bezi, and Hassan Zaghdoudi. Special thanks go to Habib Khiari, the fisherman who provided logistical assistance, to Ridha Ouni, and to Adel Ben Dhafer, the forest guardian of Zembra. We are grateful to Michelle Corson for improving the English and two anonymous reviewers for their constructive comments on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We declare that all applicable international, national, and/or institutional guidelines for sampling, care, and experimental use of organisms for the study were followed, and all necessary approvals were obtained.

Supplementary material

227_2019_3509_MOESM1_ESM.pdf (339 kb)
Supplementary material 1 (PDF 338 kb)

References

  1. Abdennadher A, Ramírez F, Romdhane MS, Ruiz X, Jover L, Sanpera C (2010) Biomonitoring of coastal areas in Tunisia: stable isotope and trace element analysis in the Yellow-legged Gull. Mar Pollut Bull 60:440–447PubMedCrossRefPubMedCentralGoogle Scholar
  2. Afán I, Navarro J, Cardador L, Ramírez F, Kato A, Rodríguez B, Ropert-CoudertY Forero MG (2014) Foraging movements and habitat niche of two closely related seabirds breeding in sympatry. Mar Biol 161:657–668CrossRefGoogle Scholar
  3. Alonso H, Matias R, Granadeiro JP, Catry P (2009) Moult strategies of Cory’s Shearwaters Calonectris diomedea borealis: the influence of colony location, sex and individual breeding status. J Ornithol 150:329–337CrossRefGoogle Scholar
  4. Alonso H, Granadeiro JP, Paiva VH, Dias AS, Ramos JA, Catry P (2012) Parent-offspring dietary segregation of Cory’s Shearwaters breeding in contrasting environments. Mar Biol 159:1197–1207CrossRefGoogle Scholar
  5. APAL (2003) Etude des Plans de Gestion des Sites MEDWETCOAST—Site de Zembra. U.R.A.M. Press, Tunis, pp 1–61Google Scholar
  6. Arizaga J, Jover L, Aldalur A, Cuadrado JF, Herrero A, Sanpera C (2013) Trophic ecology of a resident Yellow-legged Gull (Larus michahellis) population in the Bay of Biscay. Mar Environ Res 87–88:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  7. Báez JC, García-Barcelona S, Mendoza M, Ortiz de Urbina JM, Real R, Macías D (2014) Cory’s Shearwater by-catch in the Mediterranean Spanish commercial longline fishery: implications for management. Biodivers Conserv 23:661–681CrossRefGoogle Scholar
  8. Barrett RT, Camphuysen K, Anker-Nilssen T, Chardine JW, Furness RW, Garthe S, Hüppop O, Leopold FM, Montevecchi AW, Veit RR (2007) Diet studies of seabirds: a review and recommendations. ICES J Mar Sci 64:1675–1691CrossRefGoogle Scholar
  9. Bearhop S, Waldron S, Votier SC, Furness RW (2002) Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool 75:451–458PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bearhop S, Adams CE, Waldron S, Fuller RA, Macleod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012CrossRefGoogle Scholar
  11. Becker BH, Newman SH, Inglis S, Beissinger SR (2007) Diet-feather stable isotope (δ15N and δ13C) fractionation in Common Murres and other seabirds. Condor 109:451–456CrossRefGoogle Scholar
  12. Belda EJ, Sánchez A (2001) Seabird mortality on longline fisheries in the Western Mediterranean: factors affecting bycatch and proposed mitigating measures. Biol Conserv 98:357–363CrossRefGoogle Scholar
  13. Belgrano A, Scharler UM, Dunne J, Ulanowicz RE (2005) Aquatic food webs: an ecosystem approach. Oxford University Press, LondonCrossRefGoogle Scholar
  14. Bird CS, Veríssimo A, Magozzi S, Abrantes KG, Aguilar A, Al-Reasi H, Barnett DM, Bethea A, Biais G, Borrell A, Bouchoucha M, Boyle M, Brooks EJ, Brunnschweiler J, Bustamante P, Carlisle A, Catarino D, Caut S, Cherel Y, Chouvelon T, Churchill D, Ciancio J, Claes J, Colaço A, Courtney D, Cresson P, Daly R, De Necker L, Endo T, Figueiredo I, Frisch AJ, Hansen JH, Heithaus M, Hussey NE, Iitembu J, Juanes F, Kinney MJ, Kiszka JJ, Klarian SA, Kopp D, Leaf R, Li Y, Lorrain A, Madigan D, Maljković A, Malpica-Cruz L, Matich P, Meekan M, Menard F, Menezes GM, Munroe S, Newman M, Papastamatiou Y, Pethybridge H, Plumlee JD, Polo-Silva C, Quaeck-Davies K, Raoult V, Reum J, Torres-Rojas YE, Shiffman DS, Shipley ON, Speed CW, Staudinger M, Teffer A, Tilley A, Valls M, Vaudo JJ, Wai T-C, Wells RJD, Wyatt ASJ, Yool A, Trueman CN (2018) A global perspective on the trophic geography of sharks. Nat Ecol Evol 2:299–305PubMedCrossRefPubMedCentralGoogle Scholar
  15. Birdlife International (2016) Species factsheet: Calonectris diomedea. http://datazone.birdlife.org/species/factsheet/45061132. Accessed 15 Dec 2016
  16. Bond AL, Jones IL (2009) A practical introduction to stable-isotope analysis for seabird biologists: approaches, cautions and caveats. Mar Ornithol 37:183–188Google Scholar
  17. Borg J (1999) Philopatry in Cory’s Shearwater Calonectris diomedea in Malta. I1-Merill 29:11–15Google Scholar
  18. Bugoni L, McGill RAR, Furness RW (2008) Effects of preservation methods on stable isotope signatures in bird tissues. Rapid Commun Mass Spectrom 22:2457–2462PubMedCrossRefPubMedCentralGoogle Scholar
  19. Carboneras C, Derhé M, Ramírez I (2013) Update on the population status and distribution of Mediterranean shearwaters. Report to the Seventh Meeting of the ACAP Advisory Committee, La RochelleGoogle Scholar
  20. Cardona L, Álvarez de Quevedo IA, Borrell A, Aguilar A (2012) Massive consumption of gelatinous plankton by Mediterranean apex predators. PLoS One 7:e31329PubMedPubMedCentralCrossRefGoogle Scholar
  21. Carravieri A, Bustamante P, Churlaud C, Cherel Y (2013) Penguins as bio-indicators of mercury contamination in the Southern Ocean: birds from the Kerguelen Islands as a case study. Sci Total Environ 454:141–148PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cecere JG, Catoni C, Maggini I, Imperio S, Gaibani G (2013) Movement patterns and habitat use during incubation and chick-rearing of Cory’s Shearwaters from central Mediterranean: influence of seascape and breeding stage. J Zool 80:82–89Google Scholar
  23. Cecere JG, Gaibani G, Imperio S (2014) Effects of environmental variability and offspring growth on the movement ecology of breeding Scopoli’s Shearwater Calonectris diomedea. Curr Zool 60:622–630CrossRefGoogle Scholar
  24. Ceia FR, Paiva VH, Garthe S, Marques JC, Ramos JA (2014) Can variations in the spatial distribution at sea and isotopic niche width be associated with consistency in the isotopic niche of a pelagic seabird species? Mar Biol 161:1861–1872CrossRefGoogle Scholar
  25. Ceia FR, Paiva VH, Ceia RS, Hervías S, Garthe S, Marques JC, Ramos JA (2015) Spatial foraging segregation by close neighbours in a wide-ranging seabird. Oecologia 177:431–440PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cherel Y, Hobson KA (2007) Geographical variation in stable carbon isotope composition of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Prog Ser 329:281–287CrossRefGoogle Scholar
  27. Cherel Y, Hobson KA, Bailleul F, Groscolas R (2005a) Nutrition, physiology, and stable isotopes: new information from fasting and moulting penguins. Ecology 86:2881–2888CrossRefGoogle Scholar
  28. Cherel Y, Hobson KA, Hassani S (2005b) Isotopic discrimination between food and blood and feathers of captive penguins: implications for dietary studies in the wild. Physiol Biochem Zool 78:106–115PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cherel Y, Le Corre M, Jaquemet S, Ménard F, Richard P, Weimerskirch H (2008) Resource partitioning within a tropical seabird community: new information from stable isotopes. Mar Ecol Prog Ser 366:281–291CrossRefGoogle Scholar
  30. Cherel Y, Connan M, Jaeger A, Richard P (2014a) Seabird year-round and historical feeding ecology: blood and feather δ13C and δ15N values document foraging plasticity of small sympatric petrels. Mar Ecol Prog Ser 505:267–280CrossRefGoogle Scholar
  31. Cherel Y, Jacquemet S, Maglio A, Jaeger A (2014b) Differences in δ13C and δ15N values between feathers and blood of seabird chicks: implications for non-invasive isotopic investigations. Mar Biol 161:229–237CrossRefGoogle Scholar
  32. Chiaradia A, Forero MG, McInnes JC, Ramíre F (2014) Searching for the true diet of marine predators: incorporating Bayesian priors into stable isotope mixing models. PLoS One 9:e92665PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chouvelon T, Spitz J, Cherel Y, Caurant F, Sirmel R, Mèndez-Fernandez P, Bustamante P (2011) Inter-specific and ontogenic differences in δ13C and δ15N values and Hg and Cd concentrations in cephalopods. Mar Ecol Prog Ser 433:107–120CrossRefGoogle Scholar
  34. Coll M, Lotze HK, Romanuk TN (2008) Structural degradation in Mediterranean Sea food webs: testing ecological hypotheses using stochastic and mass-balance modelling. Ecosystems 11:939–960CrossRefGoogle Scholar
  35. Congdon BC, Krockenberger AK, Smithers BV (2005) Dual foraging and co-ordinated provisioning in a tropical Procellariiform, the Wedge-tailed Shearwater. Mar Ecol Prog Ser 301:293–301CrossRefGoogle Scholar
  36. Costantini D, Dell’Omo G (2015) Oxidative stress predicts long-term resight probability and reproductive success in the Scopoli’s Shearwater (Calonectris diomedea). Conserv Physiol 3:cov024PubMedPubMedCentralCrossRefGoogle Scholar
  37. Courbin N, Besnard A, Péron C, Saraux C, Fort J, Perret S, Tornos J, Grémillet D (2018) Short-term prey field lability constrains individual specialisation in resource selection and foraging site fidelity in a marine predator. Ecol Lett 21:1043–1054PubMedCrossRefPubMedCentralGoogle Scholar
  38. Cury PM, Boyd IL, Bonhommeau S, Anker-Nilssen T, Crawford RJM, Furness RW, Mills JA, Murphy EJ, Österblom H, Paleczny M, Piatt JF, Roux JP, Shannon L, Sydeman WJ (2011) Global seabird response to forage fish depletion—one-third for the birds. Science 334:1703–1706PubMedCrossRefPubMedCentralGoogle Scholar
  39. Danckwerts DK, McQuaid CD, Connan M, Smale MJ, Le Corre M, Humeau L, Jaquemet S (2016) Intra-annual variation in the foraging ecology of the endangered endemic Barau’s Petrel (Pterodroma baraui) from Réunion Island, south-western Indian Ocean: insights from a multifaceted approach. Mar Biol 163:18CrossRefGoogle Scholar
  40. Defos Du Rau P, Bourgeois K, Thévenet M, Ruffino L, Dromzée S, Ouni R, Abiadh A, Estéve R, Durand JP, Anselme L, Faggio G, Yahya JM, Rguibi H, Renda M, Miladi B, Hamrouni H, Alilech S, Nefla A, Jaouadi W, Agrebi S, Renou S (2015) Reassessment of the size of the Scopoli’s Shearwater population at its main breeding site resulted in a tenfold increase: implications for the species conservation. J Ornithol 156:877–892CrossRefGoogle Scholar
  41. Dehnhard N, Voigt CC, Poisbleau M, Demongin L, Quillfeldt P (2011) Stable isotopes in Southern Rockhopper Penguins: foraging areas and sexual differences in the non-breeding period. Polar Biol 34:1763–1773CrossRefGoogle Scholar
  42. Dehnhard N, Ludynia K, Masello JF, Voigt CC, McGill RA, Quillfeldt P (2016) Plasticity in foraging behaviour and diet buffers effects of inter-annual environmental differences on chick growth and survival in Southern Rockhopper Penguins Eudyptes chrysocome chrysocome. Polar Biol 39:1627–1641CrossRefGoogle Scholar
  43. Delord K, Pinet P, Pinaud D, Barbraud C, De Grissac S, LewdenA Cherel Y, Weimerskirch H (2016) Species-specific foraging strategies and segregation mechanisms of sympatric Antarctic Fulmarine petrels throughout the annual cycle. Ibis 158:569–586CrossRefGoogle Scholar
  44. Dimitrijević D, Paiva VH, Ramos JA, Seco J, Ceia FR, Chipev N, Valente T, Barbosa A, Xavier JC (2018) Isotopic niches of sympatric Gentoo and Chinstrap Penguins: evidence of competition for Antarctic krill? Polar Biol 41:1655–1669CrossRefGoogle Scholar
  45. Doi H, Akamatsu F, González AL (2017) Starvation effects on nitrogen and carbon stable isotopes of animals: an insight from meta-analysis of fasting experiments. R Soc Open Sci 4:170633PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fanelli E, Papiol V, Cartes JE, Rumolo P, López-Pérez C (2013) Trophic webs of deep-sea megafauna on mainland and insular slopes of the NW Mediterranean: a comparison by stable isotope analysis. Mar Ecol Prog Ser 490:199–221CrossRefGoogle Scholar
  47. Forero MG, Gonzalez-Solis J, Hobson KA, Doncazar JA, Bertellotti M, Blanco G, Bortolotti GR (2005) Stable isotopes reveal trophic segregation by sex and age in the southern giant petrel in two different food webs. Mar Ecol Prog Ser 296:107–113CrossRefGoogle Scholar
  48. Frederiksen M, Wanless S, Harris MP, Rothery P, Wilson NJ (2004) The role of industrial fisheries and environmental change in the decline of North Sea Black-legged Kittiwakes. J Appl Ecol 41:1129–1139CrossRefGoogle Scholar
  49. Fry B (2006) Stable isotope ecology. Springer, New YorkCrossRefGoogle Scholar
  50. Furness R (2007) Responses of seabirds to depletion of food fish stocks. J Ornithol 148:247–252CrossRefGoogle Scholar
  51. Gagné TO, Hyrenbach KD, Hagemann ME, Bass OL, Pimm SL, MacDonald M, Peck B, Van Houtan KS (2018) Seabird trophic position across three ocean regions tracks ecosystem differences. Front Mar Sci 5:317CrossRefGoogle Scholar
  52. GFCM (General Fisheries Commission for the Mediterranean) (2013) Report of the fifteenth session of the Scientific Advisory Committee. Rome, 8–11 April 2013. FAO Fisheries and Aquaculture Report No. 1042Google Scholar
  53. Graham BS, Koch PL, Newsome SD, McMahon KW, Aurioles D (2010) Using isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes: understanding movement, pattern and processes on Earth through isotope mapping. Springer, New York, pp 299–318CrossRefGoogle Scholar
  54. Granadeiro JP, Monteiro LR, Furness RW (1998) Diet and feeding ecology of Cory’s Shearwater Calonectris diomedea in the Azores, north-east Atlantic. Mar Ecol Prog Ser 166:267–276CrossRefGoogle Scholar
  55. Grémillet D, Péron C, Pons JB, Ouni R, Authier M, Thévenet M, Fort J (2014) Irreplaceable area extends marine conservation hotspot off Tunisia: insights from GPS-tracking Scopoli’s Shearwaters from the largest seabird colony in the Mediterranean. Mar Biol 161:2669–2680CrossRefGoogle Scholar
  56. Hairston NG Jr, Hairston NG Sr (1993) Cause–effect relationships in energy flow trophic structure and interspecific interactions. Am Nat 142:379–411CrossRefGoogle Scholar
  57. Hertz E, Trudel M, Cox MK, Mazumder A (2015) Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: a meta-analysis. Ecol Evol 5:4829–4839PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hobson KA, Bond AL (2012) Extending an indicator: year-round information on seabird trophic ecology from multiple tissue stable-isotope analyses. Mar Ecol Prog Ser 461:233–243CrossRefGoogle Scholar
  59. Hobson KA, Clark RG (1992) Assessing avian diet using stable isotopes II: factors influencing diet-tissue fractionation. Condor 94:189–197CrossRefGoogle Scholar
  60. Hobson KA, Piatt JF, Pitocchelli J (1994) Using stable isotopes to determine seabird trophic relationships. J Anim Ecol 63:786–798CrossRefGoogle Scholar
  61. Hobson KA, Gibbs HL, Gloutney ML (1997) Preservation of blood and tissue samples for stable-carbon and stable nitrogen isotope analysis. Can J Zool 75:1720–1723CrossRefGoogle Scholar
  62. Hobson KA, Mclellan BN, Woods JG (2000) Using stable carbon (δ13C) and nitrogen (δ15N) isotopes to infer trophic relationships among Black and Grizzly bears in the upper Columbia River basin, British Columbia. Can J Zool 78:1332–1339CrossRefGoogle Scholar
  63. Hodum PJ, Hobson KA (2000) Trophic relationships among Antarctic Fulmarine Petrels: insights into dietary overlap and chick provisioning strategies inferred from stable-isotope (δ15N and δ13C) analyses. Mar Ecol Prog Ser 198:273–281CrossRefGoogle Scholar
  64. Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis 150:447–461CrossRefGoogle Scholar
  65. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602PubMedCrossRefPubMedCentralGoogle Scholar
  66. Karris G, Ketsilis-Rinis V, Kalogeropoulou A, Xirouchakis S, Machias A, Maina I, Kavadas S (2018) The use of demersal trawling discards as a food source for two scavenging seabird species: a case study of an eastern Mediterranean oligotrophic marine ecosystem. Avian Res 9:26CrossRefGoogle Scholar
  67. Kelly JF (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool 78:1–27CrossRefGoogle Scholar
  68. Kowalczyk ND, Chiaradia A, Preston TJ, Reina RD (2014) Linking dietary shifts and reproductive failure in seabirds: a stable isotope approach. Funct Ecol 28:755–765CrossRefGoogle Scholar
  69. Laneri K, Louzao M, Martínez-Abraín A, Arcos JM, Belda EJ, Guallart J, Sánchez A, Giménez M, Maestre R, Oro D (2010) Trawling regime influences longline seabird by catch in the Mediterranean: new insights from a small-scale fishery. Mar Ecol Prog Ser 420:241–252CrossRefGoogle Scholar
  70. Layman CA, Arrington DA, Montana CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48PubMedCrossRefPubMedCentralGoogle Scholar
  71. Leal GR, Furness RW, McGill RAR, Santos RA, Bugoni L (2017) Feeding and foraging ecology of Trindade Petrels Pterodroma arminjoniana during the breeding period in the South Atlantic Ocean. Mar Biol 164:211–228CrossRefGoogle Scholar
  72. Louzao M, Bécares J, Rodríguez B, Hyrenbach KD, Ruiz A, Arcos JM (2009) Combining vessel-based surveys and tracking data to identify key marine areas for seabirds. Mar Ecol Prog Ser 391:183–197CrossRefGoogle Scholar
  73. Louzao M, Arcos JM, Guijarro B, Valls M, Oro D (2011) Seabird-trawling interactions: factors affecting species-specific to regional community utilisation of fisheries waste. Fish Oceanogr 20:263–277CrossRefGoogle Scholar
  74. Magalhães MC, Santos RS, Hamer KC (2008) Dual-foraging of Cory’s Shearwater in the Azores: feeling locations, behaviour at sea and implication for food provisioning of chicks. Mar Ecol Prog Ser 359:283–293CrossRefGoogle Scholar
  75. Mancini PL, Hobson KA, Bugoni L (2014) Role of body size in shaping the trophic structure of tropical seabird communities. Mar Ecol Prog Ser 497:243–257CrossRefGoogle Scholar
  76. Mariano-Jelicich R, Favero M (2006) Assessing the diet of the Black Skimmer through different methodologies: is the analysis of pellets reliable? Waterbirds 29:81–87CrossRefGoogle Scholar
  77. Martínez-Abraín A, Maestre R, Oro D (2002) Demersal trawling waste as a food source for Western Mediterranean seabirds during the summer. ICES J Mar Sci 59:529–537CrossRefGoogle Scholar
  78. Mays G, Durand JM, Gomez G (2006) Première nidification du Puffin cendré (Calonectris diomedea) sur la façade atlantique française. Ornithos 13:316–319Google Scholar
  79. McMahon KW, Hamady LL, Thorrold SR (2013) Ocean ecogeochemistry: a review. Oceanogr Mar Biol Annu Rev 51:325–372Google Scholar
  80. Militão T, Bourgeois K, Roscales JL, González-Solís J (2012) Individual migratory patterns of two threatened seabirds revealed using stable isotope and geolocation analyses. Divers Distrib 19:317–329CrossRefGoogle Scholar
  81. Moore JC, De Ruiter PC (2012) Energetic food webs: an analysis of real and model ecosystems. Oxford University Press, OxfordCrossRefGoogle Scholar
  82. Mougin JL, Jouanin C (1997) Prospection alimentaire du puffin cendré Calonectris diomedea borealis de Selvagem Grande (30″ 09′ N, 15″ 52′ W) pendant l’incubation, par télémétrie satellitaire. C R Acad Sci Paris 320:825–831CrossRefGoogle Scholar
  83. Navarro J, González-Solís J, Viscor G (2007) Nutritional and feeding ecology in Cory’s Shearwater Calonectris diomedea during breeding. Mar Ecol Prog Ser 351:261–271CrossRefGoogle Scholar
  84. Navarro J, Louzao M, Igual JM, Oro D, Delgado A, Arcos JM, Genovart M, Hobson KA, Forero MG (2009a) Seasonal changes in the diet of a critically endangered seabird and the importance of trawling discards. Mar Biol 156:2571–2578CrossRefGoogle Scholar
  85. Navarro J, Forero MG, González-Solís J, Igual JM, Bécares J, Hobson KA (2009b) Foraging segregation between two closely related shearwaters breeding in sympatry. Biol Lett 5:545–548PubMedPubMedCentralCrossRefGoogle Scholar
  86. Navarro J, Coll M, Somes CJ, Olson RJ (2013) Trophic niche of squids: insights from isotopic data in marine systems worldwide. Deep Sea Res Part II 95:93–102CrossRefGoogle Scholar
  87. Newsome SD, Martinez-del-Rio C, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436CrossRefGoogle Scholar
  88. Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell RD, Stairs GR (eds) Analysis of ecological systems. The Ohio State University Press, Columbus, pp 154–177Google Scholar
  89. Oro D, Ruiz X (1997) Exploitation of trawler discards by breeding seabirds in the north-western Mediterranean: differences between the Ebro Delta and the Balearic Islands areas. ICES J Mar Sci 54:695–707CrossRefGoogle Scholar
  90. Paiva VH, Geraldes P, Ramírez I, Merinho A, Garthe S, Ramos JA (2010a) Oceanographic characteristics of areas used by Cory’s Shearwater during short and long foraging trips in the North Atlantic. Mar Biol 157:1385–1399CrossRefGoogle Scholar
  91. Paiva VH, Xavier J, Geraldes P, Ramírez I, Garthe S, Ramos JA (2010b) Foraging ecology of Cory’s Shearwaters in different oceanic environments of the North. Atlantic 410:257–268Google Scholar
  92. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One 5:e9672PubMedPubMedCentralCrossRefGoogle Scholar
  93. Parnell AC, Phillips DL, Bearhop S, Semmens BX, Ward EJ, Moore JW, Jackson AL, Grey J, Kelly DJ, Inger R (2013) Bayesian stable isotope mixing models. Environmetrics 24:387–399Google Scholar
  94. Péron C, Grémillet D, Prudor A, Pettex E, Saraux C, Soriano-Redondo A, Authier M, Fort J (2013) Importance of coastal marine protected areas for the conservation of pelagic seabirds: the case of Vulnerable Yelkouan Shearwaters in the Mediterranean Sea. Biol Conserv 168:210–221CrossRefGoogle Scholar
  95. Pethybridge H, Choy CA, Logan JM, Allain V, Lorrain A, Bodin N, Somes CJ, Young J, Ménard F, Langlais C, Duffy L, Hobday AJ, Kuhnert P, Fry B, Menkes C, Olson RJ (2018) A global meta-analysis of marine predator nitrogen stable isotopes: relationships between trophic structure and environmental conditions. Glob Ecol Biogeogr 27:1043–1055CrossRefGoogle Scholar
  96. Podlesak DW, McWilliams SR (2006) Metabolic routing of dietary nutrients in birds: effect of diet quality and macronutrient composition revealed using stable isotopes. Physiol Biochem Zool 79:534–549PubMedCrossRefPubMedCentralGoogle Scholar
  97. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  98. Poupin N, Bos C, Mariotti F, Huneau JF, Tomé D, Fouillet H (2011) The nature of the dietary protein impacts the tissue-to-diet 15N discrimination factors in laboratory rats. PLoS One 6:e28046PubMedPubMedCentralCrossRefGoogle Scholar
  99. Quillfeldt P, Bugoni L, McGill RAR, Masello JF, Furness RW (2008) Differences in stable isotopes in blood and feathers of seabirds are consistent across species, age and latitude: implications for food web studies. Mar Biol 155:593–598CrossRefGoogle Scholar
  100. Ramos R, González-Solís J, Ruiz X (2009a) Linking isotopic and migratory patterns in a pelagic seabird. Oecologia 160:97–105PubMedCrossRefPubMedCentralGoogle Scholar
  101. Ramos R, Militao T, González-Solís J, Ruiz X (2009b) Moulting strategies of a long-distance migratory seabird: the Mediterranean Cory’s Shearwater. Ibis 151:151–159CrossRefGoogle Scholar
  102. Ramos R, Ramírez F, Sanpera C, Jover L, Ruiz X (2009c) Feeding ecology of Yellow-legged Gulls Larus michahellis in the western Mediterranean: a comparative assessment using conventional and isotopic methods. Mar Ecol Prog Ser 377:289–297CrossRefGoogle Scholar
  103. Ramos R, Granadeiro JP, Nevoux M, Mougin JL, Dias MP, Catry P (2012) Combined spatio-temporal impacts of climate and longline fisheries on the survival of a trans-equatorial marine migrant. PLoS One 7:e40822PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ramos JA, Fagundes AI, Xavier JC, Fidalgo V, Ceia FR, Medeiros R, Paiva VH (2015) A switch in the Atlantic Oscillation correlates with inter-annual changes in foraging location and food habits of Macaronesian Shearwaters (Puffinus baroli) nesting on two islands of the sub-tropical Atlantic Ocean. Deep Sea Res Part I 104:60–71CrossRefGoogle Scholar
  105. Ramos JA, Rodrigues I, Melo T, Geraldes P, Paiva VH (2018) Variation in ocean conditions affects chick growth, trophic ecology, and foraging range in Cape Verde Shearwater. Condor 120:283–290CrossRefGoogle Scholar
  106. Raya Rey A, Polito M, Archuby D, Coria N (2012) Stable isotopes identify age and sex specific dietary partitioning and foraging habitat segregation in Southern Giant Petrels breeding in Antarctica and Southern Patagonia. Mar Biol 159:1317–1326CrossRefGoogle Scholar
  107. Richoux NB, Jaquemet S, Bonnevie BT, Cherel Y, Mcquaid CD (2010) Trophic ecology of Grey-headed Albatrosses from Marion Island, Southern Ocean: insights from stomach contents and diet tracers. Mar Biol 157:1755–1766CrossRefGoogle Scholar
  108. Sears J, Hatch SA, O’brien DM (2009) Disentangling effects of growth and nutritional status on seabird stable isotope ratios. Oecologia 159:41–48PubMedCrossRefPubMedCentralGoogle Scholar
  109. Shaffer SA, Costa DP, Weimerskirch H (2003) Foraging effort in relation to the constraints of reproduction in free-ranging albatrosses. Funct Ecol 17:66–74CrossRefGoogle Scholar
  110. Somes CJ, Schmittner A, Galbraith ED, Lehmann MF, Altabet MA, Montoya JP, Letelier RM, Mix AC, Bourbonnais A, Eby M (2010) Simulating the global distribution of nitrogen isotopes in the ocean. Glob Biogeochem Cycles 24:GB4019CrossRefGoogle Scholar
  111. Somes CJ, Schmittner A, Muglia J, Oschlies A (2017) A three-dimensional model of the marine nitrogen cycle during the last glacial maximum constrained by sedimentary isotopes. Front Mar Sci 4:108CrossRefGoogle Scholar
  112. Soriano-Redondo A, Cortés V, Reyes-González JM, Guallar S, Bécares J, Rodríguez B, Arcos JM, González-Solís J (2016) Relative abundance and distribution of fisheries influence risk of seabird bycatch. Sci Rep 6:37373PubMedPubMedCentralCrossRefGoogle Scholar
  113. R Core Team (2017) https://cran.r-project.org/doc/FAQ/R-FAQ.html#Citing-R. Accessed 17 Feb 2018
  114. Thibault JC (1993) Natal philopatry in the Cory’s Shearwater (Calonectris diomedea diomedea) on Lavezzi Islands, Corsica. Colon Waterbird 16:77–82CrossRefGoogle Scholar
  115. Thompson DR, Phillips RA, Stewart FM, Waldron S (2000) Low δ13C composition in pelagic seabirds: lipid ingestion as a potential source of 13C-depleted carbon in the Procellariiformes. Mar Ecol Prog Ser 208:265–271CrossRefGoogle Scholar
  116. Tiselius P, Fransson K (2015) Daily changes in δ15N and δ13C stable isotopes in copepods: equilibrium dynamics and variations of trophic level in the field. J Plankton Res 38:751–761CrossRefGoogle Scholar
  117. UNEP/MAP, SPA/RAC (2018) SPAMIs in the Mediterranean. http://www.rac-spa.org/spami. Accessed 28 Mar 2019
  118. Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182PubMedCrossRefPubMedCentralGoogle Scholar
  119. Wanless S, Harris M, Redman P, Speakman J (2005) Low energy values of fish as a probable cause of a major seabird breeding failure in the North Sea. Mar Ecol Prog Ser 294:1–8CrossRefGoogle Scholar
  120. Warham J (1977) The incidence, functions and ecological significance of petrel stomach oils. Proc N Z Ecol Soc 24:84–93Google Scholar
  121. Weimerskirch H, Chastel O, Ackermann L, Chaurand T, Cuenotchaillet F, Hindermeyer X, Judas J (1994) Alternate long and short foraging trips in pelagic seabird parents. Anim Behav 47:472–476CrossRefGoogle Scholar
  122. Weiss F, Furness RW, Mcgill RA, Strange IJ, Masello JF, Quillfeldt P (2009) Trophic segregation of Falkland Islands seabirds: insights from stable isotope analysis. Polar Biol 32:1753–1763CrossRefGoogle Scholar
  123. Whittow GC (2001) Seabird reproductive physiology and energetics. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Boca Raton, pp 409–437CrossRefGoogle Scholar
  124. Will AP, Kitaysky AS (2018) Variability in trophic level and habitat use in response to environmental forcing: isotopic niche dynamics of breeding seabirds in the southeastern Bering Sea. Mar Ecol Prog Ser 593:247–260CrossRefGoogle Scholar
  125. Williams CT, Buck CL, Sears J, Kitaysky AS (2007) Effects of nutritional restriction on nitrogen and carbon stable isotopes in growing seabirds. Oecologia 153:11–18PubMedCrossRefPubMedCentralGoogle Scholar
  126. Xavier JC, Magalhaes MC, Mendonça AS, Antunes M, Carvalho N, Machete M, Santos RS, Paiva VH, Hamer KC (2011) Changes in diet of Cory’s Shearwaters Calonectris diomedea breeding in the Azores. Mar Ornithol 39:129–134Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Intissar Thabet
    • 1
    • 2
    Email author
  • Karen Bourgeois
    • 3
  • François Le Loc’h
    • 4
  • Aida Abdennadher
    • 2
  • Jean-Marie Munaron
    • 4
  • Manel Gharsalli
    • 2
  • Mohamed Salah Romdhane
    • 2
  • Frida Ben Rais Lasram
    • 5
  1. 1.Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
  2. 2.Institut National Agronomique de Tunisie, UR03AGRO1 Écosystèmes et Ressources AquatiquesUniversité de CarthageTunisTunisia
  3. 3.A dos d’Îles, Association for the Study and Conservation of Insular BiodiversityLançon-ProvenceFrance
  4. 4.Institut de Recherche pour le Développement, UMR LEMAR (CNRS, UBO, IRD, Ifremer), IUEMPlouzanéFrance
  5. 5.Univ. Littoral Côte d’Opale, Univ. Lille, CNRS, UMR 8187, LOG, Laboratoire d’Océanologie et de GéosciencesWimereuxFrance

Personalised recommendations