Advertisement

Marine Biology

, 166:12 | Cite as

Trophic niche expansion during the non-breeding season in kelp gulls of known breeding colony

  • Nora Lisnizer
  • Pablo Yorio
Original paper

Abstract

Year-round foraging strategies are key determinants of bird population dynamics. However, trophic ecology studies during the non-breeding period rarely focus on individuals from a known breeding colony, precluding links to demographic aspects of the target population or metapopulation. Using stable isotope analysis (δ15N, δ13C) of primary feathers moulted sequentially after breeding, we tested the trophic niche variation during the non-breeding seasons 2010 and 2011 in Kelp Gulls Larus dominicanus from a colony in coastal Patagonia (43º04′S, 64º29′W), Argentina. Isotopic niche position changed gradually from late summer to late autumn/early winter due to a progressive depletion in δ15N. In addition, niche spread showed a progressive expansion in the same study period. This niche expansion was consistent with the observed differences in the among-individual variability in feeding ecology suggested by niche metrics, being lower during the end of breeding compared to the non-breeding period. Low δ13C values of some feathers suggest that this expansion may be in part driven by the utilization of non-marine food resources/habitats by some individuals.

Notes

Acknowledgements

We thank Paula Giudici, Luciana Gallo, Martín Frixione, Paula Jones, Joanna Castillo, Carolina Oriozabala, and Vet. Virgina Rago for field-work assistance. We also thank Centro Nacional Patagónico (CONICET) for institutional support.

Funding

This research was funded by the Wildlife Conservation Society. NL was supported by a postdoctoral scholarship “Beca Puente de Apoyo a la Investigación Científica y Tecnológica” (Chubut Province Government, Argentina). The permits to access the protected area were provided by the “Subsecretaría de Turismo y Áreas Protegidas de la Provincia de Chubut” (DISPOSICIÓN No. 349-SSTyAP/10 and DISPOSICIÓN No. 350-SSTyAP/11).

Compliance with ethical standards

Conflict of interest

This research was funded by the Wildlife Conservation Society. Both authors declare that they have no conflict of interests.

Ethical approval

Animal handling and feather sampling were permitted under appropriate permits (DISPOSICIÓN No. 349-SSTyAP/10 and DISPOSICIÓN No. 350-SSTyAP/11). All applicable international, national, and institutional guidelines for the care and use of animals were followed.

References

  1. Arizaga J, Jover L, Aldalur A, Cuadrado JF, Herrero A, Sanpera C (2013) Trophic ecology of a resident Yellow-legged Gull (Larus michahellis) population in the Bay of Biscay. Mar Environ Res 87–88:19–25.  https://doi.org/10.1016/j.marenvres.2013.02.016 CrossRefPubMedGoogle Scholar
  2. Ashmole NP (1963) The regulation of numbers of tropical oceanic birds. Ibis (Lond 1859) 103b:458–473CrossRefGoogle Scholar
  3. Bearhop S, Adams C, Waldron S, Fuller R, MacLeod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012CrossRefGoogle Scholar
  4. Bertellotti M, Yorio P (1999) Spatial and temporal patterns in the diet of the Kelp Gull in Patagonia. Condor 101:790–798.  https://doi.org/10.2307/1370066 CrossRefGoogle Scholar
  5. Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411–440.  https://doi.org/10.1146/annurev-ecolsys-102209-144726 CrossRefGoogle Scholar
  6. Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The Ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28.  https://doi.org/10.1086/343878 CrossRefPubMedGoogle Scholar
  7. Burger J, Gochfeld M (1996) Family laridae (Gulls). In: del Hoyo J, Elliott A, Sartagal J (eds) Handbook of the birds of the world, vol 3. Hoatzin to auks. Lynx Edicions, Barcelona, pp 572–623Google Scholar
  8. Cama A, Josa P, Ferrer-Obiol J, Arcos JM (2011) Mediterranean Gulls Larus melanocephalus wintering along the Mediterranean Iberian coast: numbers and activity rhythms in the species’ main winter quarters. J Ornithol 152:897–907.  https://doi.org/10.1007/s10336-011-0673-6 CrossRefGoogle Scholar
  9. Ceia FR, Ramos JA (2015) Individual specialization in the foraging and feeding strategies of seabirds: a review. Mar Biol 162:1923–1938.  https://doi.org/10.1007/s00227-015-2735-4 CrossRefGoogle Scholar
  10. Ceia FR, Paiva VH, Fidalgo V, Morais L, Baeta A, Crisóstomo P, Mourato E, Garthe S, Marques JC, Ramos JA (2014) Annual and seasonal consistency in the feeding ecology of an opportunistic species, the yellow-legged gull Larus michahellis. Mar Ecol Prog Ser 497:273–284.  https://doi.org/10.3354/meps10586 CrossRefGoogle Scholar
  11. Cherel Y, Hobson KA, Guinet C, Vanpe C (2007) Stable isotopes document seasonal changes in trophic niches and winter foraging individual specialization in diving predators from the Southern Ocean. J Anim Ecol 76:826–836.  https://doi.org/10.1111/j.1365-2656.2007.01238.x CrossRefPubMedGoogle Scholar
  12. Coulson R, Coulson G (1993) Diets of the Pacific Gull Larus pacificus and the Kelp Gull Larus dominicanus in Tasmania. Emu Austral Ornithol 93:50–53.  https://doi.org/10.1071/MU9930050 CrossRefGoogle Scholar
  13. Croxall JP, Rothery P (1993) Population regulation of seabirds. In: Perrins CM, Lebreton J-D, Hirons GJM (eds) Bird population studies: relevance to conservation and management. Oxford University Press, OxfordGoogle Scholar
  14. Funes M, Liberoff AL, Galván DE (2014) Cambios tamaño-dependientes en la dieta de peces marinos y su estudio mediante análisis de isótopos estables. Ecol Austral 24:118–126Google Scholar
  15. Higgins PJ, Davies JJF (1996) Larus dominicanus Kelp Gull. In: Higgins PJ, Davies JJF (eds) Handbook of Australian, New Zealand, and Antartic birds. Oxford University Press, MelbourneGoogle Scholar
  16. Hobson K (1999) Tracing origins and migration of widlife using stable isotopes: a review. Oecologia 120:314–326CrossRefGoogle Scholar
  17. Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis (Lond 1859) 150:447–461.  https://doi.org/10.1111/j.1474-919x.2008.00839.x CrossRefGoogle Scholar
  18. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602.  https://doi.org/10.1111/j.1365-2656.2011.01806.x CrossRefPubMedGoogle Scholar
  19. Kasinsky T, Suárez N, Marinao C, Yorio P (2018) Kelp gull (Larus dominicanus) use of alternative feeding habitats at the Bahía San Blas Protected Area, Argentina. Waterbirds 41:285–294.  https://doi.org/10.1675/063.041.0308 CrossRefGoogle Scholar
  20. Kowalczyk ND, Chiaradia A, Preston TJ, Reina RD (2015) Fine-scale dietary changes between the breeding and non-breeding diet of a resident seabird. R Soc Open Sci 2:140291.  https://doi.org/10.1098/rsos.140291 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kubetzki U, Garthe S (2003) Distribution, diet and habitat selection by four sympatrically breeding gull species in the south-eastern North Sea. Mar Biol 143:199–207.  https://doi.org/10.1007/s00227-003-1036-5 CrossRefGoogle Scholar
  22. Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48.  https://doi.org/10.1890/0012-9658(2007)88%5b42:CSIRPF%5d2.0.CO;2 CrossRefPubMedGoogle Scholar
  23. León RJC, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Austral 8:125–144Google Scholar
  24. Linnebjerg JF, Fort J, Guilford T, Reuleaux A, Mosbech A, Frederiksen M (2013) Sympatric breeding auks shift between dietary and spatial resource partitioning across the annual cycle. PLoS One 8:e72987.  https://doi.org/10.1371/journal.pone.0072987 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lisnizer N, Garcia-Borboroglu P, Yorio P (2011) Spatial and temporal variation in population trends of Kelp Gulls in northern Patagonia, Argentina. Emu 111:259.  https://doi.org/10.1071/MU11001 CrossRefGoogle Scholar
  26. Lisnizer N, García-Borboroglu P, Yorio P (2014) Demographic and breeding performance of a new kelp Gull Larus dominicanus colony in Patagonia, Argentina. Ardeola 61:3–14.  https://doi.org/10.13157/arla.61.1.2014.3 CrossRefGoogle Scholar
  27. Lisnizer N, García-Borboroglu P, Pascual M, Yorio P (2015) Transfer processes drive population dynamics of kelp gull colonies in Patagonia: implications for management strategies. Mar Biol Res 11:738–746.  https://doi.org/10.1080/17451000.2014.993652 CrossRefGoogle Scholar
  28. Ludynia K, Garthe S, Luna-Jorquera G (2005) Seasonal and regional variation in the diet of the Kelp Gull in Northern Chile. Waterbirds 28:359–365CrossRefGoogle Scholar
  29. Lyons AC, Lisnizer N, Garcia-borboroglu P, Yorio P, Bouzat JL (2015) Genetics and demography of Kelp Gulls (Larus dominicanus) in Patagonia. Ornitol Neotrop 26:349–362Google Scholar
  30. Malacalza VE (1987) Aspectos de la biología reproductiva de la Gaviota Cocinera Larus dominicanus Lichtenstein, en Punta León (Chubut, Argentina). Physis 45:11–17Google Scholar
  31. Marinao C, Kasinsky T, Suárez N, Yorio P (2018) Contribution of recreational fisheries to the diet of the opportunistic Kelp Gull. Austral Ecol.  https://doi.org/10.1111/aec.12627 CrossRefGoogle Scholar
  32. Mizutani H, Fukuda M, Kabaya Y (1992) δ13C and δ15N enrichment factors of feathers of 11 species of adult birds. Ecology 73:1391–1395CrossRefGoogle Scholar
  33. Newsome SD, del Rio CM, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436.  https://doi.org/10.2307/20440730 CrossRefGoogle Scholar
  34. Newton I (1998) Population limitation in birds. Academic Press, CambridgeGoogle Scholar
  35. Oro D, Genovart M, Tavecchia G, Fowler MS, Martinez-Abrain A (2013) Ecological and evolutionary implications of food subsidies from humans. Ecol Lett 16:1501–1514.  https://doi.org/10.1111/ele.12187 CrossRefPubMedGoogle Scholar
  36. Quillfeldt P, Thorn S, Richter B, Nabte M, Coria N, Masello JF, Massaro M, Neves VC, Libertelli M (2017) Testing the usefulness of hydrogen and compound-specific stable isotope analyses in seabird feathers: a case study in two sympatric Antarctic storm-petrels. Mar Biol 164:192.  https://doi.org/10.1007/s00227-017-3224-8 CrossRefGoogle Scholar
  37. Ramos R, Ramírez F, Carrasco JL, Jover L (2011) Insights into the spatiotemporal component of feeding ecology: an isotopic approach for conservation management sciences. Divers Distrib 17:338–349.  https://doi.org/10.1111/j.1472-4642.2010.00736.x CrossRefGoogle Scholar
  38. Robb GN, McDonald RA, Chamberlain DE, Bearhop S (2008) Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front Ecol Environ 6:476–484.  https://doi.org/10.1890/060152 CrossRefGoogle Scholar
  39. Schwemmer P, Garthe S, Mundry R (2008) Area utilization of gulls in a coastal farmland landscape: habitat mosaic supports niche segregation of opportunistic species. Landsc Ecol 23:355–367.  https://doi.org/10.1007/s10980-008-9194-y CrossRefGoogle Scholar
  40. Silva Rodríguez MP, Bastida R, Darrieu CA (2000) Dieta de la Gaviota Cocinera (Larus dominicanus) en zonas costeras de la Provincia de Buenos Aires, Argentina. Ornitol Neotrop 11:331–340Google Scholar
  41. Silva-Costa A, Bugoni L (2013) Feeding ecology of Kelp Gulls (Larus dominicanus) in marine and limnetic environments. Aquat Ecol 47:211–224.  https://doi.org/10.1007/s10452-013-9436-1 CrossRefGoogle Scholar
  42. Steele WK (1992) Diet of the Hartlaub’s Gull Larus hartlaubu and the Kelp Gull L. dominicanus in the Southwestern Cape Province, South Africa. Ostrich 63:68–82.  https://doi.org/10.1080/00306525.1992.9633952 CrossRefGoogle Scholar
  43. Still CJ, Powell RL (2010) Continental-scale distributions of vegetation stable carbon isotope ratios. Isoscapes. Springer, Netherlands, pp 179–193CrossRefGoogle Scholar
  44. Takahashi A, Ito M, Suzuki Y, Watanuki Y, Thiebot J, Yamamoto T, Iida T, Trathan P, Niizuma Y, Kuwae T (2015) Migratory movements of rhinoceros auklets in the northwestern Pacific: connecting seasonal productivities. Mar Ecol Prog Ser 525:229–243.  https://doi.org/10.3354/meps11179 CrossRefGoogle Scholar
  45. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical ComputingGoogle Scholar
  46. Turner TF, Collyer ML, Krabbenhoft TJ (2010) A general hypothesis-testing framework for stable isotope ratios in ecological studies. Ecology 91:2227–2233.  https://doi.org/10.1890/09-1454.1 CrossRefPubMedGoogle Scholar
  47. Ward VL, Oschadleus HD, Underhill LG (2007) Primary moult of the Kelp Gull Larus dominicanus vetula in the Western Cape, South Africa. In: Kirkman SP (ed) Final Report of the BCLME (Benguela Current Large Marine Ecosystem) Project on Top Predators as Biological Indicators of Ecosystem Change in the BCLME. Avian Demography Unit, Cape TownGoogle Scholar
  48. Yorio P, Giaccardi M (2002) Urban and fishery waste tips as food sources for birds in northern coastal Patagonia, Argentina. Ornitol Neotrop 13:283–292Google Scholar
  49. Yorio P, Quintana F, Campagna C, Harris G (1994) Diversidad, abundancia, y dinámica espacio-temporal de la colonia mixta de aves marinas en Punta León, Patagonia. Ornitol Neotrop 5:69–77Google Scholar
  50. Yorio P, Branco JO, Lenzi J, Luna-Jorquera G, Zavalaga C (2016) Distribution and trends in Kelp Gull (Larus dominicanus) coastal breeding populations in South America. Waterbirds 39:114–135.  https://doi.org/10.1675/063.039.sp103 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro para el Estudio de Sistemas Marinos, CONICETPuerto MadrynArgentina
  2. 2.Wildlife Conservation Society ArgentinaCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations