Marine Biology

, 166:13 | Cite as

Development of a quantitative PCR–high-resolution melting assay for absolute measurement of coral-Symbiodiniaceae associations and its application to investigating variability at three spatial scales

  • Anne-Leila MeistertzheimEmail author
  • Xavier Pochon
  • Susanna A. Wood
  • Jean-François Ghiglione
  • Laetitia Hédouin


Previous molecular studies have shown that many corals host a dynamic consortium of dominant and background populations of Symbiodiniaceae genotypes with putatively distinct physiological traits. In the present study, we developed a quantitative PCR assay combined with high-resolution melting analysis (qPCR–HRM) to distinguish which Symbiodiniaceae clades are present in a sample. Because the qPCR–HRM used in isolation yielded identical melt profiles for both clades A and C, this analysis was then coupled with further specific qPCR assays to enable the absolute quantification of all Symbiodiniaceae clades and host cells. When the assays were applied to in hospite samples, they had an absolute quantification level corresponding to one coral embryo of two cells and 1000 symbiont cells. The assays were successful on coral fragments from twelve species (eight families). We then used the qPCR–HRM assay in an ecological survey of Acropora pulchra at different spatial scales (within colony, between colonies and between sites). Differences in abundance and composition of Symbiodiniaceae clades in A. pulchra were observed at all spatial scales, suggesting that various environmental factors drove changes in Symbiodiniaceae assemblages among and within coral colonies. The qPCR–HRM assay developed in this study is a relatively simple, cost-effective and reproducible tool that can be used to accurately differentiate and quantify endosymbiont Symbiodiniaceae clades in coral in the field. This will provide new insights into coral-symbiont shuffling mechanisms and the resilience of coral colonies to environmental stressors.



This work was funded by the ANR “R-ECOLOGS” and the ANR JCJC “Live and let die”. Sincere thanks are due to Prof. Mary-Alice Coffroth from State University of New York at Buffalo (USA) and Dr. Hollie Putnam from University of Rhode Island (USA) for providing us with Symbiodiniaceae cultures and DNA samples, as well as Dr. Sarah Nahon from French National Institute for Agricultural Research (France) for providing pictures. The authors would like to thank the staff of the CRIOBE for their help during the experiments, and especially Antoine Puisay for his help in sampling corals.

Author contribution

A-LM and LH designed research; ALM performed research; ALM and XP analyzed data; ALM and XP wrote the paper; and J-FG, SAW and LH revised the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Coral collection was performed according to the French Polynesia regulation.

Supplementary material

227_2018_3458_MOESM1_ESM.pdf (501 kb)
Supplementary material 1 (PDF 500 kb)


  1. Arif C, Daniels C, Bayer T, Banguera-Hinestroza E, Barbrook A, Howe CJ, LaJeunesse TC, Voolstra CR (2014) Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol Ecol 23:4418–4433PubMedCentralPubMedGoogle Scholar
  2. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ccology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689Google Scholar
  3. Baker AC (2004) Symbiont diversity on coral reefs and its relationship to bleaching resistance and resilience, Corail health and diseases. Springer, Berlin, pp 177–191Google Scholar
  4. Baker AC, Romanski AM (2007) Multiple symbiotic partnerships are common in scleractinian corals, but not in octocorals: comment on Goulet (2006). Mar Ecol Prog Ser 335:237–242Google Scholar
  5. Bay LK, Doyle J, Logan M, Berkelmans R (2016) Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral. R Soc Open Sci 3:160322PubMedCentralPubMedGoogle Scholar
  6. Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc Lond B Biol Sci 273:2305–2312Google Scholar
  7. Bongaerts P, Frade PR, Ogier JJ, Hay KB, van Bleijswijk J, Englebert N, Vermeij MJA, Bak RPM, Visser PM, Hoegh-Guldberg O (2013) Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2–60 m) on a Caribbean reef. BMC Evol Biol 13:205PubMedCentralPubMedGoogle Scholar
  8. Bosserelle P, Berteaux-Lecellier V, Chancerelle Y, Hédouin L, Nugues M, Wallace C, Pichon M (2014) Guide d’identification des coraux de Moorea. CRIOBE, French PolynesiaGoogle Scholar
  9. Boulotte NM, Dalton SJ, Carroll AG, Harrison PL, Putnam HM, Peplow LM, van Oppen MJ (2016) Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J 10:2693–2701PubMedCentralPubMedGoogle Scholar
  10. Brown BE, Dunne RP (2008) Solar radiation modulates bleaching and damage protection in a shallow water coral. Mar Ecol Prog Ser 362:99–107Google Scholar
  11. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622Google Scholar
  12. Cantin NE, van Oppen M, Willis BL, Mieog JC, Negri AP, Oppen MJH, Willis BL, Mieog JC, Negri AP (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405–414Google Scholar
  13. Chen CA, Wang J-T, Fang L-S, Yang Y-W (2005) Fluctuating algal symbiont communities in Acropora palifera (Scleractinia: Acroporidae) from Taiwan. Mar Ecol Prog Ser 295:113–121Google Scholar
  14. Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34Google Scholar
  15. Cooper TF, Berkelmans R, Ulstrup KE, Weeks S, Radford B, Jones AM, Doyle J, Canto M, O’Leary RA, van Oppen MJH (2011) Environmental factors controlling the distribution of Symbiodinium harboured by the coral Acropora millepora on the great barrier reef. PLoS One 6(10):e25536PubMedCentralPubMedGoogle Scholar
  16. Cousins MM, Ou S-S, Wawer MJ, Munshaw S, Swan D, Magaret C, Mullis CE, Serwadda D, Porcella SF, Gray RH, Quinn TC, Donnell D, Eshleman SH, Redd AD (2012) Comparison of a high resolution melting (HRM) assay to next generation sequencing for analysis of HIV diversity. J Clin Microbiol 50:3054–3059PubMedCentralPubMedGoogle Scholar
  17. Cristescu ME (2014) From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. Trends Ecol Evol 29:566–571Google Scholar
  18. Cunning R, Baker AC (2012) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Change 3:259–262Google Scholar
  19. Cunning R, Baker AC (2014) Not just who, but how many: the importance of partner abundance in reef coral symbioses. Front Microbiol 5:400PubMedCentralPubMedGoogle Scholar
  20. Cunning R, Silverstein RN, Baker AC (2015a) Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc R Soc Lond B Biol Sci 282:20141725Google Scholar
  21. Cunning R, Vaughan N, Gillette P, Capo TR, Matté JL, Baker AC, Maté JL, Baker AC (2015b) Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental change. Ecology 96:1411–1420Google Scholar
  22. Cunning R, Ritson-Williams R, Gates R (2016) Patterns of bleaching and recovery of Montipora capitata in Kāne‘ohe Bay, Hawai‘i, USA. Mar Ecol Prog Ser 551:131–139Google Scholar
  23. Druml B, Cichna-Markl M (2014) High resolution melting (HRM) analysis of DNA—its role and potential in food analysis. Food Chem 158:245–254Google Scholar
  24. Edmunds PJ, Adjeroud M, Baskett ML, Baums IB, Budd AF, Carpenter RC, Fabina NS, Fan T-Y, Franklin EC, Gross K, Han X, Jacobson L, Klaus JS, McClanahan TR, O’Leary JK, van Oppen MJH, Pochon X, Putnam HM, Smith TB, Stat M, Sweatman H, van Woesik R, Gates RD (2014) Persistence and change in community composition of reef corals through present, past, and future climates. PLoS One 9:e107525PubMedCentralPubMedGoogle Scholar
  25. Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146Google Scholar
  26. Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685Google Scholar
  27. Goulet TL (2007) Most scleractinian corals and octocorals host a single symbiotic zooxanthella clade. Mar Ecol Prog Ser 335:243–248Google Scholar
  28. Granados-Cifuentes C, Rodriguez-Lanetty M (2011) The use of high-resolution melting analysis for genotyping Symbiodinium strains: a sensitive and fast approach. Mol Ecol Resour 11:394–399Google Scholar
  29. Hédouin L, Pilon R, Puisay A (2015) Hyposalinity stress compromises the fertilization of gametes more than the survival of coral larvae. Mar Environ Res 104:1–9Google Scholar
  30. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19PubMedCentralPubMedGoogle Scholar
  31. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K (2007) Coral reefs under rapid climate change and ocean acidification. Science (80) 318:1737Google Scholar
  32. Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH (2012) Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Change 2:116–120Google Scholar
  33. Howells EJ, Willis BL, Bay LK, Van Oppen MJH (2013) Spatial and temporal genetic structure of Symbiodinium populations within a common reef-building coral on the Great Barrier Reef. Mol Ecol 22:3693–3708Google Scholar
  34. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas JA, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J, Nystrom M (2003) Climate change, human impacts, and the resilience of coral reefs. Science 80(301):929–933Google Scholar
  35. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs J-PA, Hoogenboom MO, Kennedy EV, Kuo C, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377Google Scholar
  36. Hume BCC, D’Angelo C, Smith EG, Stevens JR, Burt J, Wiedenmann J (2015) Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci Rep 5:08562Google Scholar
  37. Hume BCC, Ziegler M, Poulain J, Pochon X, Romac S, Boissin E, de Vargas C, Planes S, Wincker P, Voolstra CR (2018) An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ 6:e4816PubMedCentralPubMedGoogle Scholar
  38. Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc B Biol 275:1359–1365Google Scholar
  39. Kemp DW, Fitt WK, Schmidt GW (2008) A microsampling method for genotyping coral symbionts. Coral Reefs 27:289–293Google Scholar
  40. Kemp DW, Hernandez-Pech X, Iglesias-Prieto R, Fitt WK, Schmidt GW (2014) Community dynamics and physiology of Symbiodinium spp. before, during, and after a coral bleaching event. Limnol Oceanogr Banner 59:788–797Google Scholar
  41. Kennedy EV, Tonk L, Foster NL, Chollett I, Ortiz J-C, Dove S, Hoegh-Guldberg O, Mumby PJ, Stevens JR (2016) Symbiodinium biogeography tracks environmental patterns rather than host genetics in a key Caribbean reef-builder, Orbicella annularis. Proc R Soc B Biol Sci 283:20161938Google Scholar
  42. LaJeunesse TC, Smith RT, Finney J, Oxenford H (2009) Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral “bleaching” event. Proc Biol Sci 276:4139–4148PubMedCentralPubMedGoogle Scholar
  43. LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magaña AL, Pérez AL, Reyes-Bonilla H, Warner ME (2010) Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance. Proc Biol Sci 277:2925–2934PubMedCentralPubMedGoogle Scholar
  44. LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28:1–11Google Scholar
  45. Lavergne E, Calves I, Meistertzheim AL, Charrier G, Zajonz U, Laroche J (2014) Complex genetic structure of a euryhaline marine fish in temporarily open/closed estuaries from the wider Gulf of Aden. Mar Biol 161:113–1126Google Scholar
  46. Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science (80) 304:1492–1494Google Scholar
  47. Loram JE, Boonham N, O’Toole P, Trapido-Rosenthal HG, Douglas AE (2007) Molecular quantification of symbiotic dinoflagellate algae of the genus Symbiodinium. Biol Bull 212:259–268Google Scholar
  48. Marshall SM (1932) Notes on oxygen production in coral planulae. Grt Barrier Reef Exped Sci Rep 1:253–258Google Scholar
  49. McGinley MP, Aschaffenburg MD, Pettay DT, Smith RT, LaJeunesse TC, Warner ME (2012) Symbiodinium spp. in colonies of eastern Pacific Pocillopora spp. are highly stable despite the prevalence of low-abundance background populations. Mar Ecol Prog Ser 462:1–7Google Scholar
  50. Meistertzheim A-L, Calves I, Artigaud S, Friedman CS, Laroche J, Paillard C, Ferec C (2012) High resolution melting analysis for fast and cheap polymorphism screening of marine populations. Protoc Exch. CrossRefGoogle Scholar
  51. Mieog JC, van Oppen MJH, Cantin NE, Stam WT, Olsen JL (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 26:449–457Google Scholar
  52. Mieog JC, Van Oppen MJH, Berkelmans R, Stam WT, Olsen JL (2009) Quantification of algal endosymbionts (Symbiodinium) in coral tissue using real-time PCR. Mol Ecol Resour 9:74–82Google Scholar
  53. National Oceanic and Atmospheric Administration (2017) NOAA Coral ReefWatch program. Coral Bleaching During & Since the 2014–2017. Global Coral Bleaching Event : Status and an Appeal for Observations. Web. 19 Mar 2018  Google Scholar
  54. Naue J, Hansmann T, Schmidt U (2014) High-resolution melting of 12S rRNA and cytochrome b DNA sequences for discrimination of species within distinct European animal families. PLoS One 9:e115575PubMedCentralPubMedGoogle Scholar
  55. Pettay DT, Lajeunesse TC (2013) Long-range dispersal and high-latitude environments influence the population structure of a “stress-tolerant” dinoflagellate endosymbiont. PLoS One 8:e79208PubMedCentralPubMedGoogle Scholar
  56. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:2003–2007Google Scholar
  57. Pfaffl M (2004) Quantification strategies in real-time PCR. In: Bustin SA (ed) A–Z of Quantitative PCR. International University Line, La Jolla, CA, pp 441–492Google Scholar
  58. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497Google Scholar
  59. Putnam HM, Stat M, Pochon X, Gates RD (2012) Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc R Soc B Biol 279:4352–4361Google Scholar
  60. Quigley KM, Davies SW, Kenkel CD, Willis BL, Matz MV, Bay LK (2014) Deep-sequencing method for quantifying background abundances of Symbiodinium types: exploring the rare Symbiodinium biosphere in reef-building corals. PLoS One 9(4):e94297PubMedCentralPubMedGoogle Scholar
  61. Reaka-Kudla ML (1997) The global biodiversity of coral reefs: a comparison with rain forests. Biodiversity II: understanding and protecting our biological resources. National Academy Press, Washington, pp 83–108Google Scholar
  62. Rouzé H, Lecellier G, Saulnier D, Berteaux-Lecellier V (2016) Symbiodinium clades A and D differentially predispose Acropora cytherea to disease and Vibrio spp. colonization. Ecol Evol 6:560–572PubMedCentralPubMedGoogle Scholar
  63. Rouzé H, Lecellier GJ, Saulnier D, Planes S, Gueguen Y, Wirshing HH, Berteaux-Lecellier V (2017) An updated assessment of Symbiodinium spp. that associate with common scleractinian corals from Moorea (French Polynesia) reveals high diversity among background symbionts and a novel finding of clade B. PeerJ 5:e2856PubMedCentralPubMedGoogle Scholar
  64. Rowan R (2004) Coral bleaching: thermal adaptation in reef coral symbionts. Nature 430:742Google Scholar
  65. Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci 92:2850–2853Google Scholar
  66. Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269Google Scholar
  67. Santos SR, Coffroth MA (2003) Molecular genetic evidence that dinoflagellates belonging to the genus Symbiodinium Freudenthal are haploid. Biol Bull 204:10–20Google Scholar
  68. Silverstein RN, Correa AMS, Baker AC (2012) Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc R Soc B Biol Sci 279:2609–2618Google Scholar
  69. Spalding MD, Grenfell AM (1997) New estimates of global and regional coral reef areas. Coral Reefs 16:225–230Google Scholar
  70. Spalding M, Ravilious C, Green E (2001) World atlas of coral reefs. University of California Press and UNEP/WCMC, BerkeleyGoogle Scholar
  71. Stat M, Gates RD (2011) Clade D Symbiodinium in Scleractinian corals: a “Nugget” of Hope, a selfish opportunist, an ominous sign, or all of the above? J Mar Biol 2011:1–9Google Scholar
  72. Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts—symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43Google Scholar
  73. Stat M, Morris E, Gates RD (2008) Functional diversity in coral–dinoflagellate symbiosis. PNAS 105:9256Google Scholar
  74. Stat M, Baker AC, Bourne DG, Correa AMS, Forsman Z, Huggett MJ, Pochon X, Skillings D, Toonen RJ, van Oppen MJH, Gates RD (2012) Molecular delineation of species in the coral holobiont. Adv Mar Biol 63:1–65Google Scholar
  75. Suggett DJ, Goyen S, Evenhuis C, Szabó M, Pettay DT, Warner ME, Ralph PJ (2015) Functional diversity of photobiological traits within the genus Symbiodinium appears to be governed by the interaction of cell size with cladal designation. New Phytol 208:370–381Google Scholar
  76. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedCentralPubMedGoogle Scholar
  77. Thomas L, Kendrick GA, Kennington WJ, Richards ZT, Stat M (2014) Exploring Symbiodinium diversity and host specificity in Acropora corals from geographical extremes of Western Australia with 454 amplicon pyrosequencing. Mol Ecol 23:3113–3126Google Scholar
  78. Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722Google Scholar
  79. Thornhill DJ, Xiang Y, Fitt WK, Santos SR (2009) Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS One 4:e6262PubMedCentralPubMedGoogle Scholar
  80. Thornhill DJ, Howells EJ, Wham DC, Steury TD, Santos SR (2017) Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae). Mol Ecol 26:2640–2659Google Scholar
  81. Tonk L, Sampayo EM, LaJeunesse TC, Schrameyer V, Hoegh-Guldberg O (2014) Symbiodinium (Dinophyceae) diversity in reef-invertebrates along an offshore to inshore reef gradient near Lizard Island, Great Barrier Reef. J Phycol 50:552–563Google Scholar
  82. Ulstrup KE, Van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 12:3477–3484Google Scholar
  83. Ulstrup KE, Van Oppen MJH, Kühl M, Ralph PJ (2007) Inter-polyp genetic and physiological characterisation of Symbiodinium in an Acropora valida colony. Mar Biol 153:225–234Google Scholar
  84. Wangpraseurt D, Polerecky L, Larkum AWD, Ralph PJ, Nielsen DA, Pernice M, Kühl M (2014) The in situ light microenvironment of corals. Limnol Oceanogr 59:917–926Google Scholar
  85. Wangpraseurt D, Pernice M, Guagliardo P, Kilburn MR, Clode PL, Polerecky L, Kuhl M (2015) Light microenvironment and single-cell gradients of carbon fixation in tissues of symbiont-bearing corals. ISME J 10:788–792PubMedCentralPubMedGoogle Scholar
  86. Wilkinson C (2000) Status of coral reefs of the world 2000. Australian Institute of Marine Science, Townsville, p 557Google Scholar
  87. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860Google Scholar
  88. Yuan JS, Reed A, Chen F, Stewart CN Jr, Stewart CN Jr (2006) Statistical analysis of real-time PCR data. BMC Bioinform 7:85–97Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre de Recherches Insulaires et Observatoire de l’Environnement, USR 3278 CNRS/EPHE/UPVD, Laboratoire d’Excellence “CORAIL”Université de PerpignanPerpignan CedexFrance
  2. 2.CNRS, UPMC Univ Paris 06, UMR 7621, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls, Station marine de l’UPMC, Laboratoire AragoSorbonne UniversitésBanyuls Sur MerFrance
  3. 3.Coastal and Freshwater GroupCawthron InstituteNelsonNew Zealand
  4. 4.Institute of Marine ScienceUniversity of AucklandWarkworthNew Zealand

Personalised recommendations