Advertisement

Marine Biology

, 166:7 | Cite as

Molecular cloning of heat shock protein 60 (Hsp60) and 10 (Hsp10) genes from the cosmopolitan and harmful dinoflagellate Scrippsiella trochoidea and their differential transcriptions responding to temperature stress and alteration of life cycle

  • Yunyan Deng
  • Zhangxi Hu
  • Zhaoyang Chai
  • Ying Zhong TangEmail author
Original paper
  • 154 Downloads

Abstract

Heat shock protein 60 (Hsp60) and Hsp10 are two chaperones important to both stress responses and cellular metabolisms in most organisms. In this study, the cosmopolitan Scrippsiella trochoidea was used as a model of HAB-forming dinoflagellates to explore the possible functional roles of Hsp60 and Hsp10 in the adaptation of dinoflagellates to temperature stress and life cycle transition. The full-length cDNAs of a Hsp60 and a Hsp10 gene from S. trochoidea (StHsp60 and StHsp10) were obtained via rapid amplification of cDNA ends (RACE) and their deduced amino acid sequences both included family-characteristic conservative structures and motifs, indicating a conserved function for both among different taxa. Real-time qPCR revealed that StHsp60 and StHsp10 exhibited highly similar mRNA accumulation patterns in response to temperature stresses. Their mRNA amounts, compared to that at 20 °C (control), were rapidly up-regulated upon exposure to both lower (15 °C, 10 °C, 5 °C) and higher (25 °C, 30 °C) temperatures and showed a clear time-dependent manner, suggesting a possible involvement of StHsp60 and StHsp10 in the urgent adaptation of S. trochoidea to drastic temperature stress. Furthermore, significantly elevated mRNA levels of both genes were detected in resting cysts (newly formed and that maintained in dormancy for different durations) relative to that in vegetative cells, suggesting that higher levels of StHsp60 and StHsp10 are demanded by S. trochoidea resting cysts. The results of this work, as the first investigation to characterize Hsp60 and Hsp10 genes from dinoflagellates, enrich the knowledge about Hsps and lay an important foundation for further probing their functions in dinoflagellate resting cysts.

Notes

Acknowledgements

The authors acknowledge financial support from the National Science Foundation of China (Grant No. 41606126), the NSFC-Shandong Joint Fund for Marine Ecology and Environmental Sciences (Grant No. U1606404), National Science Foundation of China (Grant Nos. 41476142, 41506143, 61533011, and U1301235), and Creative Team Project of the Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology (Grant No. LMEES-CTSP-2018-1).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

227_2018_3455_MOESM1_ESM.docx (36 kb)
Supplementary material 1 (DOCX 36 kb)
227_2018_3455_MOESM2_ESM.docx (92 kb)
Supplementary material 2 (DOCX 92 kb)
227_2018_3455_MOESM3_ESM.docx (20 kb)
Supplementary material 3 (DOCX 19 kb)
227_2018_3455_MOESM4_ESM.xls (63 kb)
Supplementary material 4 (XLS 63 kb)

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anderson DM (1989) Cysts as factors in Pyrodinium bahamense ecology. In: Hallegraeff GM, Maclean JL (eds), Biology, epidemiology and management of Pyrodinium red tides. ICLARM Conference Proc, pp 81–88Google Scholar
  3. Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176CrossRefGoogle Scholar
  4. Aranda M, Li Y, Liew YJ et al (2016) Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci Rep 6:39734PubMedPubMedCentralCrossRefGoogle Scholar
  5. Böettinger L, Oeljeklaus S, Guiard B, Rospert S, Warscheid B, Becker T (2015) The mitochondrial heat shock protein 70 (Hsp70) and Hsp10 cooperate in the formation of Hsp60 complexes. J Biol Chem 290(18):11611–11622CrossRefGoogle Scholar
  6. Bravo I, Figueroa RI (2014) Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms 2:1–32CrossRefGoogle Scholar
  7. Brocchieri L, Karlin S (2000) Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci 9:476–486PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bukau B, Horwish AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366PubMedCrossRefGoogle Scholar
  9. Bukau B, Deuerling E, Pfund C, Craig EA (2000) Getting newly synthesized proteins into shape. Cell 101:119–122PubMedCrossRefGoogle Scholar
  10. Cappello F, Czarnecka AM, La Rocca G, Stefano AD, Zummo G, Macario AJ (2007) Hsp60 and Hsp10 as antitumor molecular agents. Cancer Biol Ther 6:487–489PubMedCrossRefGoogle Scholar
  11. Chaurasia AK, Apte SK (2009) Overexpression of the groESL operon enhances the heat and salinity stress tolerance of the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC7120. Appl Environ Microbiol 75:6008–6012PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chitnis PR, Nelson N (1991) Molecular cloning of the genes encoding two chaperone proteins of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 266:58–65PubMedGoogle Scholar
  13. Choresh O, Loya Y, Müller WE, Wiedenmann J, Azem A (2004) The mitochondrial 60-kDa heat shock protein in marine invertebrates: biochemical purification and molecular characterization. Cell Stress Chaperon 9:38–48CrossRefGoogle Scholar
  14. Demidenko NV, Logacheva MD, Penin AA (2011) Selection and validation of reference genes for quantitative real-time PCR in buckwheat (Fagopyrum esculentum) based on transcriptome sequence data. PLoS One 6:e19434PubMedPubMedCentralCrossRefGoogle Scholar
  15. Deng G, Li YG, Hu HJ, Qi YZ, Geng YH, Li ZK (2004) Effects of temperature, light and pH on photosynthesis, and of light-dark cycle on growth rate and biomass of Scrippsiella trochoidea and Alexandrium tamarense. J Wuhan Bot Res 22:129–135Google Scholar
  16. Deng YY, Zhan ZF, Tang XR, Ding LP, Duan DL (2015a) Molecular cloning and characterization of an Hsp70 gene from the bloom green alga Chaetomorpha valida (Cladophorales, Chlorophyta). J Appl Phycol 27:489–497CrossRefGoogle Scholar
  17. Deng YY, Hu ZX, Zhan ZF, Ma ZP, Tang YZ (2015b) Differential expressions of an Hsp70 gene in the dinoflagellate Akashiwo sanguinea in response to temperature stress and transition of life cycle and its implications. Harmful Alage 50:57–64CrossRefGoogle Scholar
  18. Deng YY, Hu ZX, Ma ZP, Tang YZ (2016) Validation of reference genes for gene expression studies in the dinoflagellate Akashiwo sanguinea by quantitative real-time RT-PCR. Acta Oceanol Sin 35:106–113CrossRefGoogle Scholar
  19. Deng YY, Hu ZX, Shang LX, Peng QC, Tang YZ (2017) Transcriptomic analyses of Scrippsiella trochoidea reveals processes regulating encystment and dormancy in the life cycle of a dinoflagellate, with a particular attention to the role of abscisic acid. Front Microbiol 8:2450PubMedPubMedCentralCrossRefGoogle Scholar
  20. Deng YY, Hu ZX, Chai ZY, Tang YZ (2018) Cloning and partial characterization of a cold shock domain-containing protein gene from the dinoflagellate Scrippsiella trochoidea. J Eukaryot Microbiol.  https://doi.org/10.1111/jeu.12681 CrossRefPubMedGoogle Scholar
  21. Doblin MA, Blackburn SI, Hallegraeff GM (1999) Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances. J Exp Mar Biol Ecol 236:33–47CrossRefGoogle Scholar
  22. Dubaquié Y, Looser R, Fünfschilling U, Jenö P, Rospert S (1998) Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but nonidentical requirement for hsp60 and hsp10. EMBO J 17:5868–5876PubMedPubMedCentralCrossRefGoogle Scholar
  23. Elbrăchter M (2003) Dinoflagellate reproduction: progress and conflicts. J Phycol 39:629–632CrossRefGoogle Scholar
  24. Fast NM, Xue L, Bingham SE, Keeling PJ (2002) Re-examining Alveolate evolution using multiple protein molecular phylogenies. J Eukaryot Microbi 49:30–37CrossRefGoogle Scholar
  25. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282CrossRefGoogle Scholar
  26. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) In: Walker JM (ed) The proteomics protocols handbook. Humana Press, CliftonGoogle Scholar
  27. Georgopoulos C, Welch W (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634PubMedCrossRefGoogle Scholar
  28. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684PubMedGoogle Scholar
  29. Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) Hsp60 regulation of tumor cell apoptosis. J Biol Chem 283:5188–5194PubMedCrossRefGoogle Scholar
  30. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 26–60Google Scholar
  31. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (2004) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91:1523–1534PubMedCrossRefGoogle Scholar
  32. Hallegraeff GM, Bolch CJ (1991) Transport of toxic dinoflagellate cysts via ships’ ballast water. Mar Pollut Bull 22:27–30CrossRefGoogle Scholar
  33. Hallegraeff GM, Bolch CJ (1992) Transport of diatom and dinoflagellate resting spores in ships’ ballast water: implications for plankton biogeography and aquaculture. J Plankton Res 14:1067–1084CrossRefGoogle Scholar
  34. Hartl FU, Hartl MH (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19PubMedPubMedCentralCrossRefGoogle Scholar
  36. Höhfeld J, Hartl FU (1994) Role of the chaperonin cofactor Hsp10 in protein folding and sorting in yeast mitochondria. J Cell Biol 126:305–315PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hu R, Fan C, Li H, Zhang Q, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10:93PubMedPubMedCentralCrossRefGoogle Scholar
  38. Huang W, Leu J, Tsau M, Chen J, Chen L (2011) Differential expression of LvHSP60 in shrimp in response to environmental stress. Fish Shellfish Immun 30:576–582CrossRefGoogle Scholar
  39. Kim DI, Matsuyama Y, Nagasoe S, Yamaguchi M, Yoon Y, Oshima Y, Imada N, Honjo T (2004) Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J Plankton Res 26:61–66CrossRefGoogle Scholar
  40. Kristensen TN, Dahlgaard J, Loeschcke V (2002) Inbreeding affects Hsp70 expression in two species of Drosophila even at benign temperatures. Evol Ecol Res 4:1209–1216Google Scholar
  41. Kristensen TN, Sorensen P, Kruhoffer M, Pedersen K, Loeschcke V (2005) Genome-wide analysis on inbreeding effects on gene expression in Drosophila melanogaster. Genetics 171:157–167PubMedPubMedCentralCrossRefGoogle Scholar
  42. Krogh A, Larsson B, Von Heijne B, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRefGoogle Scholar
  43. Lin S (2011) Genomic understanding of dinoflagellates. Res Microbiol 162:551–569PubMedCrossRefGoogle Scholar
  44. Lin S, Zhang H, Zhuang Y, Tran B, Gill J (2010) Spliced leader-based metatranscriptomic analyses lead to recognition of hidden genomic features in dinoflagellates. Proc Natl Acad Sci USA 107:20033–20038PubMedCrossRefGoogle Scholar
  45. Lubben TH, Gatenby AA, Donaldson GK, Lorimer GH, Viitanen PV (1990) Identification of a groES-like chaperonin in mitochondria that facilitates protein folding. Proc Natl Acad Sci USA 87:7683–7687PubMedCrossRefGoogle Scholar
  46. Magen D, Georgopoulos C, Bross P, Ang D, Segev Y, Goldsher D et al (2008) Mitochondrial Hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am J Hum Genet 83:30–42PubMedPubMedCentralCrossRefGoogle Scholar
  47. Makino S, Whitehead GG, Lien C-L, Kim S, Jhawar P, Kono A, Kawata Y, Keating MT (2005) Heat-shock protein 60 is required for blastema formation and maintenance during regeneration. Proc Natl Acad Sci USA 102:14599–14604PubMedCrossRefGoogle Scholar
  48. Marino ER, Borges AA, Perez AB, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131CrossRefGoogle Scholar
  49. Martin J, Horwich AL, Hartl FU (1992) Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Science 258:995–998PubMedCrossRefGoogle Scholar
  50. Martin J, Geromanos S, Tempest P, Hartl FU (1993) Identification of nucleotide binding regions in the chaperonin proteins GroEL and GroES. Nature 366:279–282PubMedCrossRefGoogle Scholar
  51. Matsubara T, Nagasoe S, Yamasaki Y, Shikata T, Shimasaki Y, Oshima Y, Honjo T (2007) Effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea. J Exp Mar Biol Ecol 342:226–230CrossRefGoogle Scholar
  52. Matsuoka K, Fukuyo Y (2000) Technical guide for modern dinoflagellate cyst study. WESTPAC-HAB/WESTPAC/IOC. IOC/WESTPAC-HAB, the University of Tokyo, Tokyo, p 29Google Scholar
  53. Meinhardt A, Wilhem B, Seitz J (1999) Expression of mitochondrial marker proteins during spermatogenesis. Hum Reprod Update 5:108–119PubMedCrossRefGoogle Scholar
  54. Miller-Morey JS, Van Dolah FM (2004) Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis. Comp Biochem Phys C 138:493–505CrossRefGoogle Scholar
  55. Morey JS, Monroe EA, Kinney AL, Beal M, Johnson JG, Hitchcock GL, Van Dolah FM (2011) Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition. BMC Genom 12:346CrossRefGoogle Scholar
  56. Morse D, Milos PM, Roux E, Hastings JW (1989) Circadian regulation of bioluminescence in Gonyaulax involves translational control. Proc Natl Acad Sci USA 86:172–176PubMedCrossRefGoogle Scholar
  57. Nehring S (1993) Mechanisms for recurrent nuisance algal blooms in coastal zones: resting cyst formation as life-strategy of dinoflagellates. In: Sterr H, Hofstade J, Plag HP (eds) Interdisciplinary discussion of coastal research and coastal management issues and problems. Lang, Frankfurt, pp 454–467Google Scholar
  58. Okamoto OK, Hastings JW (2003) Novel dinoflagellate clock-related genes identified through microarray analysis. J Phycol 39:519–526CrossRefGoogle Scholar
  59. Pedersen KS, Kristensen TN, Loeschcke V (2005) Effects of inbreeding and rate of inbreeding in Drosophila melanogaster-Hsp70 expression and fitness. J Evol Biol 18:756–762PubMedCrossRefGoogle Scholar
  60. Petersen TN, Brunak S, Von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefGoogle Scholar
  61. Pfaffl M (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007CrossRefGoogle Scholar
  62. Prasad TK, Stewart CR (1992) cDNA clones encoding Arabidopsis thaliana and Zea mays mitochondrial chaperonin HSP60 and gene expression during seed germination and heat shock. Plant Mol Biol 18:873–885PubMedCrossRefPubMedCentralGoogle Scholar
  63. Prinsloo E, Setati MM, Longshaw VM, Blatch GL (2009) Chaperoning stem cells: a role for heat shock proteins in the modulation of stem cell self-renewal and differentiation? BioEssays 31:370–377PubMedCrossRefPubMedCentralGoogle Scholar
  64. Radonic A, Thulke S, Mackay I, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862PubMedCrossRefGoogle Scholar
  65. Ramalhosantos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA (2002) “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298:597–600CrossRefGoogle Scholar
  66. Rengefors K, Karlsson I, Hansson LA (1998) Algal cyst dormancy: a temporal escape from herbivory. Proc R Soc Lond B 265:1353–1358CrossRefGoogle Scholar
  67. Rombel IT, Sykes KF, Rayner S, Johnston SA (2002) ORF-Finder: a vector for high-throughput gene identification. Gene 282:33–41PubMedCrossRefGoogle Scholar
  68. Rospert S, Glick BS, Jenö P, Schatz G, Todd MJ, Lorimer GH, Viitanen PV (1993) Identification and functional analysis of chaperonin 10, the groES homolog from yeast mitochondria. Proc Natl Acad Sci USA 90:10967–10971PubMedCrossRefGoogle Scholar
  69. Ryan MT, Hoogenraad NJ, Høj PB (1994) Isolation of a cDNA clone specifying rat chaperonin 10, a stress-inducible mitochondrial matrix protein synthesised without a cleavable presequence. FEBS Lett 337:152–156PubMedCrossRefGoogle Scholar
  70. Ryan MT, Naylor DJ, Hoj PB, Clark MS, Hoogenraad NJ (1997) The role of molecular chaperones in mitochondrial protein import and folding. Int Rev Cytol 174:127–193PubMedCrossRefGoogle Scholar
  71. Sanchez GI, Carucci DJ, JrJ Sacci, Resau JH, Rogers WO, Kumar N, Hoffman SL (1999) Plasmodium yoelii: cloning and characterization of the gene encoding for the mitochondrial heat shock protein 60. Exp Parasitol 93:181–190PubMedCrossRefGoogle Scholar
  72. Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW (2000) Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem 285:194–204PubMedCrossRefGoogle Scholar
  73. Smayda TJ (1997) Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42:1137–1153CrossRefGoogle Scholar
  74. Smayda TJ (2007) Reflections on the ballast water dispersal-harmful algal bloom paradigm. Harmful Algae 6:601–622CrossRefGoogle Scholar
  75. Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037CrossRefGoogle Scholar
  76. Steidinger KA, Tangen K (1996) Dinoflagellates. In: Tomas CR (ed) Identifying marine diatoms and dinoflagellates. Academic Press, New York, pp 387–589CrossRefGoogle Scholar
  77. Tang YZ, Gobler CJ (2012) Lethal effects of Northwest Atlantic Ocean isolates of the dinoflagellate, Scrippsiella trochoidea, on Eastern oyster (Crassostrea virginica) and Northern quahog (Mercenaria mercenaria) larvae. Mar Biol 159:199–210CrossRefGoogle Scholar
  78. Tang YZ, Hu ZX, Deng YY (2016) Characteristical life history (resting cyst) provides a mechanism for recurrence and geographic expansion of harmful algal blooms of dinoflagellates: a review. Stud Mar Sin 51:132–154Google Scholar
  79. Timakov B, Zhang P (2001) The hsp60B gene in Drosophila melanogaster is essential for the spermatid individualization process. Cell Stress Chaperone 6:71–77CrossRefGoogle Scholar
  80. Tominaga H, Coury DA, Amano H, Miki W, Kakinuma M (2012) cDNA cloning and expression analysis of two heat shock protein genes, Hsp90 and Hsp60, from a sterile Ulva pertusa (Ulvales, Chlorophyta). Fish Sci 78:415–429CrossRefGoogle Scholar
  81. Trotter EW, Kao CMF, Berenfeld L, Botstein D, Petsko GA, Gray JV (2002) Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J Biol Chem 277:44817–44825PubMedCrossRefGoogle Scholar
  82. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252PubMedPubMedCentralCrossRefGoogle Scholar
  83. Wang Z, Yu Z, Song X, Cao X, Zhang Y (2014) Effects of ammonium and nitrate on encystment and growth of Scrippsiella trochoidea. Chin Sci Bull 59:4491–4497CrossRefGoogle Scholar
  84. Wheeler JC, King V, Tower J (1999) Sequence requirements for upregulating expression of Drosophila hsp70 transgenes during aging. Neurobiol Aging 20:545–553PubMedCrossRefGoogle Scholar
  85. Wisecaver JH, Hackett JD (2011) Dinoflagellate genome evolution. Annu Rev Microbiol 65:369–387PubMedCrossRefGoogle Scholar
  86. Xu Q, Qin Y (2012) Molecular cloning of heat shock protein 60 (PtHSP60) from Portunus trituberculatus and its expression response to salinity stress. Cell Stress Chaperone 17:589–601CrossRefGoogle Scholar
  87. Xu Z, Horwich AL, Sigler PB (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388:741–750PubMedCrossRefGoogle Scholar
  88. Xu N, Lv SH, Chen JF, He LS, Xie LC, Qi YZ (2004) The influence of water temperature and salinity on the growth of Scrippsiella trochoidea. Mar Environ Sci 23:36–38Google Scholar
  89. Xu D, Sun L, Liu S, Zhang L, Ru X, Zhao Y, Yang H (2014) Molecular cloning of heat shock protein 10 (Hsp10) and 60 (Hsp60) cDNAs and their expression analysis under thermal stress in the sea cucumber Apostichopus japonicus. Comp Biochem Phys B 171:49–57CrossRefGoogle Scholar
  90. Yang Y, Ye H, Huang H, Li S, Zeng X, Gong J, Huang X (2013) Characterization and expression of SpHsp60 in hemocytes after challenge to bacterial, osmotic and thermal stress from the mud crab Scylla paramamosain. Fish Shellfish Immunol 35:1185–1191PubMedCrossRefGoogle Scholar
  91. Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, Lin S (2007) Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci USA 104:4618–4623PubMedCrossRefGoogle Scholar
  92. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419PubMedPubMedCentralCrossRefGoogle Scholar
  93. Zhou MJ, Yu RC (2007) Mechanisms and impacts of harmful algal blooms and the count measures. Chin J Nat 29:72–77Google Scholar
  94. Zingone A, Garcés E, Wyatt T, Silvert B, Bolch C (2002) The importance of life cycles in the ecology of harmful algal blooms. In: Garcés E, Zingone A, Montresor M, Reguera B, Dale B (eds) LIFEHAB: life histories of microalgal species causing harmful blooms. Office for the Official Publications of the European Community, Luxembourg, pp 134–137Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Laboratory of Marine Ecology and Environmental ScienceQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Center for Ocean Mega-ScienceChinese Academy of SciencesQingdaoChina

Personalised recommendations