Advertisement

Marine Biology

, 165:166 | Cite as

How do food sources drive meiofauna community structure in soft-bottom coastal food webs?

  • L. H. van der Heijden
  • J. Rzeznik-Orignac
  • R. M. Asmus
  • D. Fichet
  • M. Bréret
  • P. Kadel
  • L. Beaugeard
  • H. Asmus
  • B. Lebreton
Original paper

Abstract

Meiofauna have a strong role in the functioning of coastal ecosystems but how their food sources affect their community structure remains unclear, likely due to the influence of abiotic parameters and the small size of these organisms. The meiofauna and their potential food sources were sampled in several intertidal habitats (i.e., mudflat, seagrass bed, sandflat) of the Marennes-Oléron Bay, France, and the Sylt-Rømø Bight, Germany, to assess the relationships between habitat characteristics and meiofauna community structure. Biomass and quality (carbon/chlorophyll a ratios) of food sources were estimated. Meiofauna community structure based on density and biomass was determined, as well as nematode diversity and feeding types. Meiofauna density and biomass varied highly within habitats and within ecosystems, ranging from 1.7 × 105 to 3.4 × 106 ind. m−2 and from 0.057 to 1.541 gC m−2, respectively. Benthic microalgae and sediment organic matter are important drivers in these food webs as the density of two important trophic groups of nematodes, non-selective deposit feeders and epigrowth feeders, varied in accordance with these food sources. No clear relationship was observed between bacterial biomass and selective deposit feeders (i.e., bacterivores) probably due to the high production rate of bacteria. Complementary information about production rates of food source as well as data from trophic markers would provide complimentary information to better understand flows of organic matter in intertidal habitats, particularly for opportunistic species such as non-selective deposit feeders.

Notes

Acknowledgements

This study forms part of the Ph.D. thesis of L. van der Heijden. This work was financially supported by the University of La Rochelle through a grant provided by the ‘Ministère de l’Enseignement Supérieur et de la Recherche’. This work was supported by the CNRS through the CNRS research chair provided to B. Lebreton. Financial support was provided by the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, as well as the University of La Rochelle (Mobility for doctoral students) and the German Academic Exchange Service (DAAD: short-term research grant, 2017, no. 57314023). We acknowledge P. Pineau, B. Hussel, S. Horn, M. Burgdorf, M. Paar and N. Lachaussée for their support during fieldwork, and G. Guillou and C. Labrune for their support in the analyses. We thank Q. Bernier for his help in sample processing and analysis. Finally, L. van der Heijden thanks the members of his Ph.D. committee, M. Graeve, N. Niquil and G. Blanchard, for their guidance, as well as two anonymous reviewers whose comments greatly improved the manuscript.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical statement

All applicable international, national and/or institutional guidelines for the sampling, care and use of organisms were followed.

Supplementary material

227_2018_3419_MOESM1_ESM.pdf (645 kb)
Supplementary material 1 (PDF 646 kb)

References

  1. Armonies W, Hellwig-Armonies M (1987) Synoptic patterns of meiofaunal and macrofaunal abundances and specific composition in littoral sediments. Helgoländer Meeresuntersuchungen 41:83–111.  https://doi.org/10.1007/bf02365101 CrossRefGoogle Scholar
  2. Asmus RM (1983) Benthische und pelagische Primärproduktion und Nährsalzbilanz. Ber. Inst. Meereskunde, Univ. Kiel, Eine Freilanduntersuchung im Watt der NordseeGoogle Scholar
  3. Asmus H, Asmus RM (1985) The importance of grazing food chain for energy flow and production in three intertidal sand bottom communities of the northern Wadden Sea. Helgoländer Meeresuntersuchungen 39:273–301.  https://doi.org/10.1007/bf01992775 CrossRefGoogle Scholar
  4. Asmus H, Asmus RM (2005) Significance of suspension-feeder systems on different spatial scales. In: Dame RF, Olenin S (eds) The comparative roles of suspension-feeders in ecosystems. Springer, Amsterdam, pp 199–219CrossRefGoogle Scholar
  5. Asmus RM, Bauerfeind E (1994) The microphytobenthos of Königshafen—spatial and seasonal distribution on a sandy tidal flat. Helgoländer Meeresuntersuchungen 48:257–276.  https://doi.org/10.1007/bf02367040 CrossRefGoogle Scholar
  6. Austen MC, Widdicombe S, Villano-Pitacco N (1998) Effects of biological disturbance on diversity and structure of meiobenthic nematode communities. Mar Ecol Prog Ser 174:233–246.  https://doi.org/10.3354/meps174233 CrossRefGoogle Scholar
  7. Azovsky AI, Chertoprood ES, Saburova MA, Polikarpov IG (2004) Spatio-temporal variability of micro- and meiobenthic communities in a White Sea intertidal sandflat. Estuar Coast Shelf Sci 60:663–671.  https://doi.org/10.1016/j.ecss.2004.03.005 CrossRefGoogle Scholar
  8. Baird D, Asmus H, Asmus R (2007) Trophic dynamics of eight intertidal communities of the Sylt-Rømø Bight ecosystem, northern Wadden Sea. Mar Ecol Prog Ser 351:25–41.  https://doi.org/10.3354/meps07137 CrossRefGoogle Scholar
  9. Bergamaschi BA, Tsamakis E, Keil RG, Eglinton TI, Montluçon DB, Hedges JI (1997) The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments. Geochim Cosmochim Acta 61:1247–1260.  https://doi.org/10.1016/s0016-7037(96)00394-8 CrossRefGoogle Scholar
  10. Blanchard GF (1991) Measurement of meiofauna grazing rates on microphytobenthos: is primary production a limiting factor? J Exp Mar Bio Ecol 147:37–46.  https://doi.org/10.1016/0022-0981(91)90035-u CrossRefGoogle Scholar
  11. Boschker HTS, Wielemaker A, Schaub BEM, Holmer M (2000) Limited coupling of macrophyte production and bacterial carbon cycling in the sediments of Zostera spp. meadows. Mar Ecol Prog Ser 203:181–189.  https://doi.org/10.3354/meps203181 CrossRefGoogle Scholar
  12. Cammen LM (1991) Annual bacterial production in relation to benthic microalgal production and sediment oxygen uptake in an intertidal sandflat and an intertidal mudflat. Mar Ecol Prog Ser 71:13–25.  https://doi.org/10.3354/meps071013 CrossRefGoogle Scholar
  13. Castel J, Labourg P-J, Escavarage V, Auby I, Garcia ME (1989) Influence of seagrass beds and oyster parks on the abundance and biomass patterns of meio- and macrobenthos in tidal flats. Estuar Coast Shelf Sci 28:71–85CrossRefGoogle Scholar
  14. Cebrián J (1999) Patterns in the fate of production in plant communities. Am Nat 154:449–468.  https://doi.org/10.1086/303244 CrossRefPubMedGoogle Scholar
  15. Chardy P, Dauvin JC (1992) Carbon flows in a subtidal fine sand community from the western English Channel: a simulation analysis. Mar Ecol Prog Ser 81:147–161.  https://doi.org/10.3354/meps081147 CrossRefGoogle Scholar
  16. Cnudde C, Werbrouck E, Lepoint G, Vangansbeke D, Moens T, De Troch M (2015) Trophodynamics of intertidal harpacticoid copepods based on stable isotopes and fatty acid profiling. Mar Ecol Prog Ser 524:225–239.  https://doi.org/10.3354/meps11161 CrossRefGoogle Scholar
  17. Coull BC (1999) Role of meiofauna in estuarine soft-bottom habitats. Aust J Ecol 24:327–343.  https://doi.org/10.1046/j.1442-9993.1999.00979.x CrossRefGoogle Scholar
  18. Dale NG (1974) Bacteria in intertidal sediment: factors related to their distribution. Limnol Oceanogr 19:509–519CrossRefGoogle Scholar
  19. Danovaro R (1996) Detritus-Bacteria-Meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Mar Biol 127:1–13.  https://doi.org/10.1007/bf00993638 CrossRefGoogle Scholar
  20. Danovaro R, Gambi C (2002) Biodiversity and trophic structure of nematode assemblages in seagrass systems: evidence for a coupling with changes in food availability. Mar Biol 141:667–677.  https://doi.org/10.1007/s00227-002-0857-y CrossRefGoogle Scholar
  21. Danovaro R, Gambi C, Mirto S (2002) Meiofaunal production and energy transfer efficiency in a seagrass Posidonia oceanica bed in the western Mediterranean. Mar Ecol Prog Ser 234:95–104.  https://doi.org/10.3354/meps234095 CrossRefGoogle Scholar
  22. Day JWJ, Hall CAS, Kemp MW, Yáñez-Arancibia A (eds) (1989) Estuarine ecology. Wiley, New YorkGoogle Scholar
  23. de Jong DJ, de Jonge VN (1995) Dynamics and distribution of microphytobenthic chlorophyll-a in the Western Scheldt estuary (SW Netherlands). Hydrobiologia 311:21–30.  https://doi.org/10.1007/bf00008568 CrossRefGoogle Scholar
  24. de Jonge VN (1980) Fluctuations in the organic carbon to chlorophyll-a ratios for estuarine benthic diatom populations. Mar Ecol Prog Ser 2:345–353.  https://doi.org/10.3354/meps002345 CrossRefGoogle Scholar
  25. de Jonge VN, Bouwman LA (1977) A simple density separation technique for quantitative isolation of microphytobenthos using the coloidal silica LudoxTM. Mar Biol 42:143–148.  https://doi.org/10.1007/bf00391564 CrossRefGoogle Scholar
  26. De Troch M, Gurdebeke S, Fiers F, Vincx M (2001) Zonation and structuring factors of meiofauna communities in a tropical seagrass bed (Gazi Bay, Kenya). J Sea Res 45:45–61.  https://doi.org/10.1016/s1385-1101(00)00055-1 CrossRefGoogle Scholar
  27. De Troch M, Houthoofd L, Chepurnov V, Vanreusel A (2006) Does sediment grain size affect diatom grazing by harpacticoid copepods? Mar Environ Res 61:265–277.  https://doi.org/10.1016/j.marenvres.2005.10.004 CrossRefPubMedGoogle Scholar
  28. Dechambenoy CL, Pointier F, Sirou F, Vouvé J (1977) Apport de la thermographie infrarouge aéroportée à la connaissance de la dynamique superficielle des estuaires (système Charente-Seudre-Anse de l’Aiguillon). Acad des Sci 284:1269–1272Google Scholar
  29. Duarte CM, Cebrián J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41:1758–1766.  https://doi.org/10.4319/lo.1996.41.8.1758 CrossRefGoogle Scholar
  30. Dupuy C, Nguyen Thanh H, Mizrahi D, Jourde J, Bréret M, Agogué H, Beaugeard L, Bocher P (2015) Structure and functional characteristics of the meiofauna community in highly unstable intertidal mudbanks in Suriname and French Guiana (North Atlantic coast of South America). Cont Shelf Res 110:39–47.  https://doi.org/10.1016/j.csr.2015.09.019 CrossRefGoogle Scholar
  31. Ellison RL (1984) Foraminifera and meiofauna on an intertidal mudflat, Cornwall, England: populations; respiration and secondary production; and energy budget. Hydrobiologia 109:131–148.  https://doi.org/10.1007/bf00011572 CrossRefGoogle Scholar
  32. Escaravage V, Garcia ME, Castel J (1989) The distribution of meiofauna and its contribution to detritic pathways in tidal flats (Arcachon Bay, France). In: Ros JD (ed) Topics in marine biology. Instituto de Ciencias del Mar, Barcelona, pp 551–559Google Scholar
  33. Fonseca G, Hutchings P, Gallucci F (2011) Meiobenthic communities of seagrass beds (Zostera capricorni) and unvegetated sediments along the coast of New South Wales, Australia. Estuar Coast Shelf Sci 91:69–77.  https://doi.org/10.1016/j.ecss.2010.10.003 CrossRefGoogle Scholar
  34. Franco MA, Soetaert K, Van Oevelen D, Van Gansbeke D, Costa MJ, Vincx M, Vanaverbeke J (2008) Density, vertical distribution and trophic responses of metazoan meiobenthos to phytoplankton deposition in contrasting sediment types. Mar Ecol Prog Ser 358:51–62.  https://doi.org/10.3354/meps07361 CrossRefGoogle Scholar
  35. Frontalini F, Semprucci F, du Châtelet EA, Francescangeli F, Margaritelli G, Rettori R, Spagnoli F, Balsamo M, Coccioni R (2014) Biodiversity trends of the meiofaunal and foraminiferal assemblages of Lake Varano (southern Italy). Proc Biol Soc Washingt 127:7–22.  https://doi.org/10.2988/0006-324x-127.1.7 CrossRefGoogle Scholar
  36. Gallucci F, Steyaert M, Moens T (2005) Can field distributions of marine predacious nematodes be explained by sediment constraints on their foraging success? Mar Ecol Prog Ser 304:167–178.  https://doi.org/10.3354/meps304167 CrossRefGoogle Scholar
  37. Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments, 2nd edn. Springer, BerlinGoogle Scholar
  38. Gouleau D, Jouanneau JM, Weber O, Sauriau PGG (2000) Short- and long-term sedimentation on Montportail-Brouage intertidal mudflat, Marennes-Oléron Bay (France). Cont Shelf Res 20:1513–1530.  https://doi.org/10.1016/s0278-4343(00)00035-2 CrossRefGoogle Scholar
  39. Guarini J-M, Blanchard GF, Bacher C, Gros P, Riera P, Richard P, Gouleau D, Prou J, Galois R, Sauriau P-G (1998) Dynamics of spatial patterns of microphytobenthic biomass: inferences from a geostatistical analysis of two comprehensive surveys in Marennes-Oléron Bay (France). Mar Ecol Prog Ser 166:131–141CrossRefGoogle Scholar
  40. Guillaumont B (1991) Utilisation de l’imagerie satellitaire pour des comparaisons spatiales et temporelles en zone intertidale. In: Elliott M, Ducrotoy J-P (eds) Estuaries and coasts: spatial and temporal intercomparisons. ECSA19 symposium. Olsen & Olsen Press, Fredensborg, pp 63–68Google Scholar
  41. Haubois AG, Guarini JM, Richard P, Fichet D, Radenac G, Blanchard GF (2005) Ingestion rate of the deposit-feeder Hydrobia ulvae (Gastropoda) on epipelic diatoms: effect of cell size and algal biomass. J Exp Mar Bio Ecol 317:1–12.  https://doi.org/10.1016/j.jembe.2004.11.009 CrossRefGoogle Scholar
  42. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Ocean Mar Biol Ann Rev 23:399–489Google Scholar
  43. Hemminga M, Duarte CM (2000) Seagrass ecology, 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  44. Hicks GRF, Coull BC (1983) The ecology of marine meiobenthic harpacticoid copepods. Ocean Mar Biol Ann Rev 21:67–175.  https://doi.org/10.1234/2013/999990 CrossRefGoogle Scholar
  45. Higgins RP, Thiel H (1988) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, DCGoogle Scholar
  46. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432.  https://doi.org/10.2307/1934352 CrossRefGoogle Scholar
  47. Iken K, Brey T, Wand U, Voigt J, Junghans P (2001) Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Prog Oceanogr 50:383–405.  https://doi.org/10.1016/s0079-6611(01)00062-3 CrossRefGoogle Scholar
  48. Jensen P (1983) Meiofaunal abundance and vertical zonation in a sublittoral soft bottom, with a test of the Haps corer. Mar Biol 74:319–326.  https://doi.org/10.1007/bf00403458 CrossRefGoogle Scholar
  49. Josefson AB, Widbom B (1988) Differential response of benthic macrofauna and meiofauna to hypoxia in the Gullmar Fjord basin. Mar Biol 100:31–40.  https://doi.org/10.1007/bf00392952 CrossRefGoogle Scholar
  50. Kervella S (2009) Dynamique des sédiments fins et mixtes des zones intertidales de la baie de Marennes-Oléron. Université de La RochelleGoogle Scholar
  51. Kotwicki L, De Troch M, Urban-Malinga B, Gheskiere T, Weslawski JM (2005a) Horizontal and vertical distribution of meiofauna on sandy beaches of the North Sea (The Netherlands, Belgium, France). Helgol Mar Res 59:255–264.  https://doi.org/10.1007/s10152-005-0001-8 CrossRefGoogle Scholar
  52. Kotwicki L, Szymelfenig M, De Troch M, Urban-Malinga B, Wȩsławski JM (2005b) Latitudinal biodiversity patterns of meiofauna from sandy littoral beaches. Biodivers Conserv 14:461–474.  https://doi.org/10.1007/10531-004-6272-6 CrossRefGoogle Scholar
  53. Lavergne C, Beaugeard L, Dupuy C, Courties C, Agogué H (2014) An efficient and rapid method for the enumeration of heterotrophic prokaryotes in coastal sediments by flow cytometry. J Microbiol Methods 105:31–38.  https://doi.org/10.1016/j.mimet.2014.07.002 CrossRefPubMedGoogle Scholar
  54. Lebreton B (2009) Analyse de la structure et du fonctionnement du reseau trophique d’un herbier par approche multi-traceurs: tracage isotopique naturel et profils acides gras. Université de La RochelleGoogle Scholar
  55. Lebreton B, Richard P, Radenac G, Bordes M, Bréret M, Arnaud C, Mornet F, Blanchard GF (2009) Are epiphytes a significant component of intertidal Zostera noltii beds? Aquat Bot 91:82–90.  https://doi.org/10.1016/j.aquabot.2009.03.003 CrossRefGoogle Scholar
  56. Lebreton B, Richard P, Galois R, Radenac G, Brahmia A, Colli G, Grouazel M, André C, Guillou G, Blanchard GF (2012) Food sources used by sediment meiofauna in an intertidal Zostera noltii seagrass bed: a seasonal stable isotope study. Mar Biol 159:1537–1550.  https://doi.org/10.1007/s00227-012-1940-7 CrossRefGoogle Scholar
  57. Leduc D, Probert PK (2011) Small-scale effect of intertidal seagrass (Zostera muelleri) on meiofaunal abundance, biomass, and nematode community structure. J Mar Biol Assoc United Kingdom 91:579–591.  https://doi.org/10.1017/s0025315410001645 CrossRefGoogle Scholar
  58. Leduc D, Probert PK, Duncan A (2009) A multi-method approach for identifying meiofaunal trophic connections. Mar Ecol Prog Ser 383:95–111.  https://doi.org/10.3354/meps07991 CrossRefGoogle Scholar
  59. Lee S, Fuhrman JEDA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Deep Res Part B Oceanogr Lit Rev 53:1298–1303.  https://doi.org/10.1016/0198-0254(87)96080-8 CrossRefGoogle Scholar
  60. Leguerrier D, Niquil N, Boileau N, Rzeznik J, Sauriau PG, Le Moine O, Bacher C (2003) Numerical analysis of the food web of an intertidal mudflat ecosystem on the Atlantic coast of France. Mar Ecol Prog Ser 246:17–37.  https://doi.org/10.3354/meps246017 CrossRefGoogle Scholar
  61. Lorenzen CJ (1966) A method for the continuous measurement of in vivo chlorophyll concentration. Deep Res Oceanogr Abstr 13:223–227.  https://doi.org/10.1016/0011-7471(66)91102-8 CrossRefGoogle Scholar
  62. Lü S, Wang X, Han B (2009) A field study on the conversion ratio of phytoplankton biomass carbon to chlorophyll-a in Jiaozhou Bay, China. Chin J Oceanol Limnol 27:793–805.  https://doi.org/10.1007/s00343-009-9221-0 CrossRefGoogle Scholar
  63. Machás R, Santos R (1999) Sources of organic matter in Ria Formosa revealed by stable isotope analysis. Acta Oecologica 20:463–469.  https://doi.org/10.1016/s1146-609x(99)00122-8 CrossRefGoogle Scholar
  64. MacIntyre HL, Geider RJ, Miller DC (1996) Microphytobenthos: the ecological role of the “Secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19:202.  https://doi.org/10.2307/1352225 CrossRefGoogle Scholar
  65. Marbà N, Holmer M, Gacia E, Barron Marb N (2006) Seagrass beds and coastal biogeochemistry. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 159–192Google Scholar
  66. Maria TF, Vanaverbeke J, Esteves AM, De Troch M, Vanreusel A (2012) The importance of biological interactions for the vertical distribution of nematodes in a temperate ultra-dissipative sandy beach. Estuar Coast Shelf Sci 97:114–126.  https://doi.org/10.1016/j.ecss.2011.11.030 CrossRefGoogle Scholar
  67. Materatski P, Vafeiadou AM, Ribeiro R, Moens T, Adão H (2015) A comparative analysis of benthic nematode assemblages from Zostera noltii beds before and after a major vegetation collapse. Estuar Coast Shelf Sci 167:256–268.  https://doi.org/10.1016/j.ecss.2015.07.001 CrossRefGoogle Scholar
  68. Materatski P, Ribeiro R, Moreira-Santos M, Sousa JP, Adão H (2018) Nematode biomass and morphometric attributes as descriptors during a major Zostera noltii collapse. Mar Biol 165:1–17.  https://doi.org/10.1007/s00227-018-3283-5 CrossRefGoogle Scholar
  69. Mayer LM (1994) Relationships between mineral surfaces and organic carbon concentrations in soil and sediments. Chem Geol 114:347–363.  https://doi.org/10.1016/0009-2541(94)90063-9 CrossRefGoogle Scholar
  70. McLusky DS, Elliott M (2004) The estuarine ecosystem: ecology, threats and management. OUP, OxfordCrossRefGoogle Scholar
  71. Moens T, Vincx M (1997) Observations on the feeding ecology of estuarine nematodes. J Mar Biol Assoc United Kingdom 77:211–227CrossRefGoogle Scholar
  72. Moens T, Gansbeke D, Vincx M (1999a) Linking estuarine nematodes to their suspected food. A case study from the Westerschelde Estuary (south-west Netherlands). J Mar Biol Assoc United Kingdom 79:1017–1027.  https://doi.org/10.1017/s0025315499001253 CrossRefGoogle Scholar
  73. Moens T, Verbeeck L, de Maeyer A, Swings J, Vincx M (1999b) Selective attraction of marine bacterivorous nematodes to their bacterial food. Mar Ecol Prog Ser 176:165–178.  https://doi.org/10.3354/meps176165 CrossRefGoogle Scholar
  74. Moens T, Bouillon S, Gallucci F (2005) Dual stable isotope abundances unravel trophic position of estuarine nematodes. J Mar Biol Assoc UK 85:1401–1407.  https://doi.org/10.1017/s0025315405012580 CrossRefGoogle Scholar
  75. Moens T, Braeckman U, Derycke S, Fonseca G, Gallucci F, Gingold R, Guilini K, Ingels J, Leduc D, Vanaverbeke J, Van Colen C, Vanreusel A, Vincx M (2013) Ecology of free-living marine nematodes. In: Schmidt-Rhaesa A (ed) Nematoda. De Gruyter, Berlin, pp 109–152Google Scholar
  76. Ndaro SGM, Olafsson E (1999) Soft-bottom fauna with emphasis on nematode assemblage structure in a tropical intertidal lagoon in Zanzibar, eastern Africa: I. spatial variability. Hydrobiologia 405:133–148.  https://doi.org/10.1023/A:1003874122971 CrossRefGoogle Scholar
  77. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O’hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H, Oksanen MJ (2017) vegan: community ecology package. R package version 2.4-1. https://CRAN.R-project.org/package=veganN
  78. Pacella SR, Lebreton B, Richard P, Phillips D, DeWitt TH, Niquil N (2013) Incorporation of diet information derived from Bayesian stable isotope mixing models into mass-balanced marine ecosystem models: a case study from the Marennes-Oléron Estuary, France. Ecol Modell 267:127–137.  https://doi.org/10.1016/j.ecolmodel.2013.07.018 CrossRefGoogle Scholar
  79. Pascal P-Y (2008) Devenir des bacteries dans les reseaux trophiques des vasieres intertidales: le cas de Brouage (Baie de Marennes-Oleron). Sciences du Vivant [q-bio]. Universite de La Rochelle, 2008. FrancaisGoogle Scholar
  80. Pascal P-Y, Dupuy C, Richard P, Mallet C, du Châtelet EA, Niquil N (2009) Seasonal variation in consumption of benthic bacteria by meio- and macrofauna in an intertidal mudflat. Limnol Oceanogr 54:1048–1059.  https://doi.org/10.4319/lo.2009.54.4.1048 CrossRefGoogle Scholar
  81. Pedersen O, Borum J, Duarte CM, Fortes MD (1998) Oxygen dynamics in the rhizosphere of Cymodocea rotundata. Mar Ecol Prog Ser 169:283–288.  https://doi.org/10.3354/meps169283 CrossRefGoogle Scholar
  82. Pinckney JL, Zingmark RG (1993) Modeling the annual production of intertidal benthic microalgae in estuarine ecosystems. J Phycol 29:396–407.  https://doi.org/10.1111/j.1529-8817.1993.tb00140.x CrossRefGoogle Scholar
  83. Platt HM, Warwick RM (1983) Free-living marine nematodes. Part 1: British enoplids. Synopsis of the British Fauna (new) No. 28. Cambridge University Press, CambridgeGoogle Scholar
  84. Platt HM, Warwick RM (1988) Free-living marine nematodes. Part II: British chromadorids. Synopsis of the British Fauna (new) No. 38. Cambridge University Press, CambridgeGoogle Scholar
  85. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL: http://www.r-project.org/
  86. Ravail B, Héral M, Maestrini S, Robert J-M (1988) Incidence du débit de la Charente sur la capacité biotique du bassin ostréicole du bassin de Marennes-Oléron. J Rech Ocean 13:48–52Google Scholar
  87. Reise K (1985) Tidal flat ecology: an experimental approach to species interactions, ecological. Springer, BerlinCrossRefGoogle Scholar
  88. Reise K, Kohlus J (2008) Seagrass recovery in the Northern Wadden Sea? Helgol Mar Res 62:77–84.  https://doi.org/10.1007/s10152-007-0088-1 CrossRefGoogle Scholar
  89. Rzeznik-Orignac J, Fichet D (2012) Experimental estimation of assimilation rates of meiofauna feeding on 14C-labelled benthic diatoms. J Exp Mar Bio Ecol 432–433:179–185.  https://doi.org/10.1016/j.jembe.2012.06.019 CrossRefGoogle Scholar
  90. Rzeznik-Orignac J, Fichet D, Boucher G (2003) Spatio-temporal structure of the nematode assemblages of the Brouage mudflat (Marennes Oléron, France). Estuar Coast Shelf Sci 58:77–88.  https://doi.org/10.1016/s0272-7714(03)00061-1 CrossRefGoogle Scholar
  91. Rzeznik-Orignac J, Boucher G, Fichet D, Richard P (2008) Stable isotope analysis of food source and trophic position of intertidal nematodes and copepods. Mar Ecol Prog Ser 359:145–150.  https://doi.org/10.3354/meps07328 CrossRefGoogle Scholar
  92. Saint-Béat B, Dupuy C, Bocher P, Chalumeau J, De Crignis M, Fontaine C, Guizien K, Lavaud J, Lefebvre S, Montanié H, Mouget J-L, Orvain F, Pascal P-Y, Quaintenne G, Radenac G, Richard P, Robin F, Vézina AF, Niquil N (2013) Key features of intertidal food webs that support migratory shorebirds. PLoS One 8:1–17.  https://doi.org/10.1371/journal.pone.0076739 CrossRefGoogle Scholar
  93. Seinhorst JW (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4:67–69.  https://doi.org/10.1163/187529259x00381 CrossRefGoogle Scholar
  94. Semprucci F, Balsamo M (2012) Free-living marine nematodes as bioindicators: past, present and future perspectives. Environ Res J 6:17–36Google Scholar
  95. Semprucci F, Boi P, Manti A, Harriague AC, Rocchi M, Colantoni P, Papa S, Balsamo M (2010) Benthic communities along a littoral of the Central Adriatic Sea (Italy). Helgol Mar Res 64:101–115.  https://doi.org/10.1007/s10152-009-0171-x CrossRefGoogle Scholar
  96. Sikora WB, Sikora JP (1982) Ecological implications of the vertical distribution of meiofauna in salt marsh sediments. Estuar Comp.  https://doi.org/10.1016/b978-0-12-404070-0.50022-3 CrossRefGoogle Scholar
  97. Smidt ELB (1951) Animal production in the Danish Waddensea. Meddr Kommn Danm Fisk-og Havunders Ser Fisk 11:1–151Google Scholar
  98. Smol N, Willems KA, Govaere JCR, Sandee AJJ (1994) Composition, distribution and biomass of meiobenthos in the Oosterschelde estuary (SW Netherlands). Hydrobiologia 282–283:197–217.  https://doi.org/10.1007/BF00024631 CrossRefGoogle Scholar
  99. Soetaert K, Vincx M, Wittoeck J, Tulkens M (1995) Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia 311:185–206.  https://doi.org/10.1007/BF00008580 CrossRefGoogle Scholar
  100. Steyaert M, Herman PMJ, Moens T, Widdows J, Vincx M (2001) Tidal migration of nematodes on an estuarine tidal flat (the Molenplaat, Schelde Estuary, SW Netherlands). Mar Ecol Prog Ser 224:299–304.  https://doi.org/10.3354/meps224299 CrossRefGoogle Scholar
  101. Steyaert M, Vanaverbeke J, Vanreusel A, Barranguet C (2003) The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuar Coast Shelf Sci 58:353–366.  https://doi.org/10.1016/S0272-7714(03)00086-6 CrossRefGoogle Scholar
  102. Steyaert M, Moodley L, Nadong T, Moens T, Soetaert K, Vincx M (2007) Responses of intertidal nematodes to short-term anoxic events. J Exp Mar Biol Ecol 345:175–184.  https://doi.org/10.1016/J.JEMBE.2007.03.001 CrossRefGoogle Scholar
  103. Suzuki R, Shimodaira H (2015) Hierarchical clustering with p-values via multiscale bootstrap resampling. R package version 2.0-0. http://www.sigmath.es.osaka-u.ac.jp/shimo-lab/prog/pvclust/
  104. Thornton DCO, Dong LF, Underwood GJC, Nedwell DB (2002) Factors affecting microphytobenthic biomass, species composition and production in the Colne Estuary (UK). Aquat Microb Ecol 27:285–300.  https://doi.org/10.3354/ame027285 CrossRefGoogle Scholar
  105. Tietjen J, Lee J (1977) Feeding behaviour of marine nematodes. In: Coul B (ed) Ecology of marine benthos. University of South Carolina Press, Columbia, pp 21–35Google Scholar
  106. Underwood GJC, Kromkamp J (1999) Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res 29:93–139CrossRefGoogle Scholar
  107. Underwood GJC, Paterson DM (1993) Recovery of intertidal benthic diatoms after biocide treatment and associated sediment dynamics. J Mar Biol Assoc UK 73:25–45.  https://doi.org/10.1017/S002531540003263X CrossRefGoogle Scholar
  108. Vafeiadou AM, Materatski P, Adão H, De Troch M, Moens T (2014) Resource utilization and trophic position of nematodes and harpacticoid copepods in and adjacent to Zostera noltii beds. Biogeosciences 11:4001–4014.  https://doi.org/10.5194/bg-11-4001-2014 CrossRefGoogle Scholar
  109. Vanaverbeke J, Soetaert K, Vincx M (2004) Changes in morphometric characteristics of nematode communities during a spring phytoplankton bloom deposition. Mar Ecol Prog Ser 273:139–146.  https://doi.org/10.3354/meps273139 CrossRefGoogle Scholar
  110. Vizzini S, Sarà G, Michener RH, Mazzola A (2002) The role and contribution of the seagrass Posidonia oceanica (L.) Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta Oecologica 23:277–285.  https://doi.org/10.1016/S1146-609X(02)01156-6 CrossRefGoogle Scholar
  111. Warwick RM (1971) Nematode associations in the Exe Estuary. J Mar Biol Assoc United Kingdom 51:439–454.  https://doi.org/10.1017/S0025315400031908 CrossRefGoogle Scholar
  112. Warwick RM, Price R (1979) Ecological and metabolic studies on free-living nematodes from an estuarine mud-flat. Estuar Coast Mar Sci 9:257–271.  https://doi.org/10.1016/0302-3524(79)90039-2 CrossRefGoogle Scholar
  113. Warwick RM, Platt HM, Somerfield PJ (1998) Free-living marine nematodes: Part III. Monhysterida. Synopses of the British Fauna (new) No. 53. Cambridge University Press, CambridgeGoogle Scholar
  114. Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392.  https://doi.org/10.1086/622910 CrossRefGoogle Scholar
  115. Wetzel MA, Fleeger JW, Powers SP (2001) Effects of hypoxia and anoxia on meiofauna: a review with new data from the Gulf of Mexico. In: Nancy N, Rabalais RET (eds) Coastal hypoxia: consequences for living resources and ecosystems. American Geophysical Union, Washington, DC, pp 165–184CrossRefGoogle Scholar
  116. Wieser W (1953) Die Beziehungen zwischen Mundhohlengestalt, Ernahrungsweise und Vorkommen bei freilebenden marinen Nematoden. Ark Zool (Ser 2) 4:439–484Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UMR 7266 Littoral, Environnement et Sociétés (CNRS-University of La Rochelle), Institut du littoral et de l’environnementLa RochelleFrance
  2. 2.Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Wattenmeerstation SyltList/SyltGermany
  3. 3.Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d’Ecogéochimie des Environnements Benthiques (LECOB UMR 8222), Observatoire OcéanologiqueBanyuls/MerFrance

Personalised recommendations