Marine Biology

, 165:130 | Cite as

Tracing European eel in the diet of mesopelagic fishes from the Sargasso Sea using DNA from fish stomachs

  • Mads Reinholdt JensenEmail author
  • Steen Wilhelm Knudsen
  • Peter Munk
  • Philip Francis Thomsen
  • Peter Rask Møller
Original paper


Trophic interactions in complex mesopelagic ecosystems are generally poorly understood, but tracing diet remains of predators provides key insights into these. In many cases, however, the prey remains obtained from predator stomachs are unidentifiable by visual inspection and identification depends on new molecular techniques. Here, we search for predators on larvae of the critically endangered European eel (Anguilla anguilla), a species which has shown a dramatic decline in recruitment to the stock. We sampled for predators among mesopelagic fishes using pelagic trawling in the known area of spawning and larval distribution of A. anguilla in the Sargasso Sea. We aimed at developing a species-specific quantitative PCR (qPCR) system, targeting the nd4-region of mitochondrial DNA (mtDNA), to search for eel remains in the stomachs of 17 mesopelagic fish taxa (62 specimens). Remains of A. anguilla were confirmed in 9.7% of all fish stomachs investigated, representing six species (Lampanyctus cuprarius, L. photonotus, Myctophum selenops, Notoscopelus caudispinosus, Melamphaes typhlops, and Chauliodus danae). Thus, our study documents that mesopelagic fishes in the Sargasso Sea to some extent predate the A. anguilla larvae, motivating further studies on upper-level trophic interactions in this oceanic ecosystem.



The Sargasso-eel expedition was funded by the Carlsberg foundation. We are grateful to all crew and staff onboard R/V Dana that helped with the fishing and sorting of the catches. The study was partly funded by the Innovation Fund Denmark (Grant 104-2012-1) and the Natural History Museum of Denmark. We thank Werner Schwarzhans for cross-checking fish species identifications using both otolith structures and morphology. We also thank Mikkel Skovrind and Eva Egelyng Sigsgaard for laboratory assistance. Lastly, we thank the three reviewers for their valuable input and suggestions to the manuscript.

Compliance with ethical standards

Ethical approval

All applicable international and national guidelines for the care and use of animals were followed. All procedures performed in this study were in accordance with the ethical standards of the institution at which the study was conducted.

Conflict of interest

The authors declare no financial or other conflict of interests.

Supplementary material

227_2018_3390_MOESM1_ESM.pdf (402 kb)
Supplementary material 1 (PDF 403 kb)


  1. Agersnap S, Larsen WB, Knudsen SW, Strand D, Thomsen PF, Hesselsøe M, Mortensen PB, Vrålstad T, Møller PR (2017) Monitoring of noble, signal and narrowclawed crayfish using environmental DNA from freshwater samples. PLoS ONE 12:e0179261. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Albaina A, Fox CJ, Taylor N, Hunter E, Maillard M, Taylor MI (2010) A TaqMan real–time PCR based assay targeting plaice (Pleuronectes platessa L.) DNA to detect predation by the brown shrimp (Crangon crangon L.) and the shore crab (Carcinus maenas L.)—assay development and validation. J Exp Mar Biol Ecol 391:178–189. CrossRefGoogle Scholar
  3. Als TD, Hansen MM, Maes GE, Castonguay M, Riemann L, Aarestrup K, Munk P, Sparholt H, Hanel R, Bernatchez L (2011) All roads lead to home: panmixia of European eel in the Sargasso Sea. Mol Ecol 20(7):1333–1346. CrossRefPubMedGoogle Scholar
  4. Andersen K, Bird KL, Rasmussen M, Haile J, Breuning-Madsen H, Kjær KH, Orlando L, Gilbert MTP, Willerslev E (2012) Meta-barcoding of ‘dirt’ DNA from soil reflects vertebrate biodiversity. Mol Ecol 21:1966–1979. CrossRefPubMedGoogle Scholar
  5. Appelbaum S (1982) Studies on food organisms of pelagic fishes as revealed by the 1979 North Atlantic Eel expedition. Helgolander Meeresun 35:357–367. CrossRefGoogle Scholar
  6. Åström M, Dekker W (2007) When will the eel recover? A full life-cycle model. ICES J Mar Sci 64:1491–1498. CrossRefGoogle Scholar
  7. Bartow KA, Sutton TT (2008) Ecology of the midwater fish family Melamphaidae over the Mid-Atlantic Ridge. ICES J Mar Sci 2008(C:17):1–10Google Scholar
  8. Berry O, Bulman C, Bunce M, Coghlan M, Murray DC, Ward RD (2015) Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Mar Ecol Prog Ser 540:167–181. CrossRefGoogle Scholar
  9. Berry TE, Osterrieder SK, Murray DC, Coghlan ML, Richardson AJ, Grealy AK, Stat M, Bejder L, Bunce M (2017) DNA metabarcoding for diet analysis and biodiversity: a case study using the endangered Australian sea lion (Neophoca cinerea). Ecol Evol 7:5435–5453. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, Yu DW, de Bruyn M (2014) Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol 29:358–367. CrossRefGoogle Scholar
  11. Brandl S, Schumer G, Schreier BM, Conrad JL, May B, Baerwald MR (2015) Ten real-time PCR assays for detection of fish predation at the community level in the San Francisco Estuary-Delta. Mol Ecol Resour 15:278–284. CrossRefPubMedGoogle Scholar
  12. Butler M, Bollens SM, Burkhalter B, Madin LP, Horgan E (2001) Mesopelagic fishes of the Arabian Sea: distribution, abundance and diet of Chauliodus pammelas, Chauliodus sloani, Stomias affinis, and Stomias nebulosus. Deep Sea Res Part II 48(6-7):1369–1383. CrossRefGoogle Scholar
  13. Carreon-Martinez L, Johnson TB, Ludsin SA, Heath DD (2011) Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. J Fish Biol 78:1170–1182. CrossRefPubMedGoogle Scholar
  14. Castonguay M, McCleave JD (1987) Vertical distributions, diel and ontogenetic vertical migrations and net avoidance of leptocephali of Anguilla and other common species in the Sargasso Sea. J Plankton Res 9:195–214. CrossRefGoogle Scholar
  15. Cherel Y, Fontaine C, Richard P, Labatc J-P (2010) Isotopic niches and trophic levels of myctophid fishes and their predators in the Southern Ocean. Limnol Oceanogr 55:324–332. CrossRefGoogle Scholar
  16. De Barba M, Miquel C, Boyer F, Mercier C, Rioux D, Coissac E, Taberlet P (2014) DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Mol Ecol Resour 14:306–323. CrossRefPubMedGoogle Scholar
  17. Drummond AJ, Newcomb RD, Buckley TR, Xie D, Dopheide A, Potter BCM, Heled J, Ross HA, Tooman L, Grosser S, Park D, Demetras NJ, Stevens MI, Russell JC, Anderson SH, Carter A, Nelson N (2015) Evaluating a multigene environmental DNA approach for biodiversity assessment. GigaScience 4:46. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dufour S, Burzawa-Gerard E, Le Belle N, Sbaihi M, Vidal B (2003) Reproductive endocrinology of the European eel, Anguilla anguilla. In: Aida K, Tsukamoto K, Yamauchi K (eds) Eel biology. Springer, Tokyo, pp 373–383.
  19. Dypvik E, Klevjer TA, Kaartvedt S (2012) Inverse vertical migration and feeding in glacier lanternfish (Benthosema glaciale). Mar Biol 159:443–453. CrossRefPubMedGoogle Scholar
  20. Ebeling AW, Weed WH III (1973) Order Xenoberyces (Stephanoberyciformes). In: Cohen DM, Atz JW, Gibbs RH, Berry FH, Lachner EA, Böhlke JE, Mead GW, Merriman D, Parr AE, Schroeder WC (eds) Fishes of the western North Atlantic, part 6. Memoirs of the sears foundation for marine research. Yale University Press, New Haven, pp 397–478Google Scholar
  21. Ellison SLR, English CA, Burns MJ, Keer JT (2006) Routes to improving the reliability of low level DNA analysis using real-time PCR. BMC Biotechnol 6:33. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fahay MP (2007) Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras), vol II. Northwestern Atlantic Fisheries Organization, Dartmouth, Nova Scotia, pp 932–1696Google Scholar
  23. Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ficetola GF, Pansu J, Bonin A, Coissac E, Giguet-Covex C, De Barba M, Gielly L, Lopes CM, Boyer F, Pompanon F, Rayé G, Taberlet P (2014) Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol Ecol Resour 15:543–556. CrossRefPubMedGoogle Scholar
  25. Fricke R, Eschmeyer WN (2017) Electronic version accessed 31 August 2017. Guide to Fish Collections. ( (Arranged by museum abbreviation and by country, includes type catalogs and historical publications and www sites where available)
  26. Froese R, Pauly D (eds) (2017) FishBase. World Wide Web electronic publication. Accessed June 2017
  27. Gartner JV, Musick JA (1989) Feeding habits of the deep sea fish Scopelogadus beanii (Pisces: Melamphaidae), in the western North Atlantic. Deep Sea Res 36:1457–1470. CrossRefGoogle Scholar
  28. Gjøsaeter J, Kawaguchi K (1980) A review of the world resources of mesopelagic fish. FAO Fish Tech Pap No. 193. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  29. Grassi GB (1896)  The reproduction and metamorphosis of the common eel (Anguilla vulgaris). Proc R Soc Lond 60:260–271. CrossRefGoogle Scholar
  30. Hibert F, Taberlet P, Chave J, Scotti-Saintagne C, Sabatier D, Richard-Hansen C (2013) Unveiling the diet of elusive rainforest herbivores in next generation sequencing era? The tapir as a case study. PLoS ONE 8:e60799. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Howe C (2007a) Chapter 3—simple cloning. In: Howe C (ed) Gene cloning and manipulation. Cambridge University Press, Cambridge, pp 52–73.
  32. Howe C (2007b) Chapter 7—modification and mutagenesis. In: Howe C (ed) Gene cloning and manipulation. Cambridge University Press, Cambridge, pp 143–161.
  33. Hulley PA (1984) Myctophidae, clofnam 58. In: Whitehead PJP, Bauchot M-L, Hureau J-C, Nielsen J, Tortonese E (eds) Fishes of the north-eastern Atlantic and the Mediterranean, vol I. UNESCO, Paris, pp 429–483Google Scholar
  34. Hunter E, Taylor N, Fox CJ, Maillard M, Taylor MI (2012) Effectiveness of TaqMan probes for detection of fish eggs and larvae in the stomach contents of a teleost predator. J Fish Biol 81:320–328. CrossRefPubMedGoogle Scholar
  35. IUCN (2017) The IUCN Red List of Threatened Species. Version 2017-3. Downloaded on 06 February 2018
  36. Jacobsen MW, Pujolar JM, Gilbert MT, Moreno-Mayar JV, Bernatchez L, Als TD, Lobon-Cervia J, Hansen MM (2014) Speciation and demographic history of Atlantic eels (Anguilla anguilla and A. rostrata) revealed by mitogenome sequencing. Heredity 113:432–442. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:W43–W46. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291. CrossRefPubMedGoogle Scholar
  40. Mauchline J, Gordon JDM (1983) Diets of clupeoid, stomiatoid and salmonoid fish of the Rockall Trough, northeastern Atlantic Ocean. Mar Biol 77:67–78. CrossRefGoogle Scholar
  41. Maul GE (1986) Melamphaidae, clofnam 117. In: Whitehead PJP, Bauchot M-L, Hureau J-C, Nielsen J, Tortonese E (eds) Fishes of the north-eastern Atlantic and the Mediterranean, vol II. UNESCO, Paris, pp 756–765Google Scholar
  42. Merrett NR, Roe HSJ (1974) Patterns and selectivity in the feeding of certain mesopelagic fishes. Mar Biol 28:115–125. CrossRefGoogle Scholar
  43. Miller MJ, Dubosc J, Vourey E, Tsukamoto K, Allain V (2015) Low occurrence rates of ubiquitously present leptocephalus larvae in the stomach contents of predatory fish. ICES J Mar Sci 72:1359–1369. CrossRefGoogle Scholar
  44. Morrow JE Jr (1964) Family Chauliodontidae. In: Bigelow HB, Breder CM, Olsen YH, Cohen DM, Schroeder WC, Mead GW, Schultz LP, Merriman D, Tee-Van J (eds) Fishes of the western North Atlantic, part 4. Memoirs of the sears foundation for marine research. Yale University Press, New Haven, pp 274–289Google Scholar
  45. Munk P, Nielsen TG, Jaspers C, Ayala DJ, Tang KW, Lombard F, Riemann L (2018) Vertical structure of plankton communities in areas of European eel larvae distribution in the Sargasso Sea. J Plankton Res. CrossRefGoogle Scholar
  46. Nafpaktitis BG, Backus RH, Craddock JE, Haedrich RL, Robison BH, Karnella C (1977) Family myctophidae. In: Gibbs RH Jr, Berry FH, Eschmeyer WN, Böhlke JE, Mead GW, Cohen DM, Merriman D, Collette BB, Pietsch TW, Parr AE (eds) Fishes of the western North Atlantic, part 7. Memoirs of the sears foundation for marine research. Yale University Press, New Haven, pp 13–258Google Scholar
  47. Palumbi SR, Martin A, Romano S, McMillan WO, Stice L, Grabawski G (1991) The simple fool’s guide to PCR, version 2.0. University of Hawaii, Honolulu (Privately published, compiled by Palumbi, S. R.) Google Scholar
  48. Piñol J, San Andrés V, Clare EL, Mir G, Symondson WOC (2014) A pragmatic approach to the analysis of diets of generalist predators: the use of next-generation sequencing with no blocking probes. Mol Ecol Resour 14:18–26. CrossRefPubMedGoogle Scholar
  49. Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman SN, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950. CrossRefPubMedGoogle Scholar
  50. Roe HSJ, Badcock J (1984) The diel migrations and distributions within a mesopelagic community in the North East Atlantic. 5 vertical migrations and feeding of fish. Prog Oceanogr 13:389–424. CrossRefGoogle Scholar
  51. Rosel PE, Kocher TD (2002) DNA–based identification of larval cod in stomach contents of predatory fishes. J Exp Mar Biol Ecol 267:75–88. CrossRefGoogle Scholar
  52. Sameoto DD (1988) Feeding of lantern fish Benthosema glaciale off the Nova Scotia shelf. Mar Ecol Prog Ser 44:113–129. CrossRefGoogle Scholar
  53. Sameoto DD (1989) Feeding ecology of the lantern fish Benthosema glaciale in a subarctic region. Polar Biol 9:169–178. CrossRefGoogle Scholar
  54. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441–448. CrossRefPubMedGoogle Scholar
  55. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain–terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467CrossRefPubMedGoogle Scholar
  56. Schmidt J (1923) The breeding places of the eel. Phil Trans R Soc B 211:179–208. CrossRefGoogle Scholar
  57. Schooley JD, Karam AP, Kesner BR, Marsh PC, Pacey CA, Thornbrugh DJ (2008) Detection of larval remains after consumption by fishes. Trans Am Fish Soc 137:1044–1049. CrossRefGoogle Scholar
  58. Schreier BM, Baerwald MR, Conrad JL, Schumer G, May B (2016) Examination of predation on early life stage delta smelt in the San Francisco estuary using DNA diet analysis. Trans Am Fish Soc 145:723–733. CrossRefGoogle Scholar
  59. Sigsgaard EE, Carl H, Møller PR, Thomsen PF (2015) Monitoring the near–extinct European weather loach in Denmark based on environmental DNA from water samples. Biol Conserv 183:46–52. CrossRefGoogle Scholar
  60. Sigsgaard EE, Nielsen IB, Bach SS, Lorenzen ED, Robinson DP, Knudsen SW, Pedersen MW, Al Jaidah M, Orlando L, Willerslev E, Møller PR, Thomsen PF (2016) Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nat Ecol Evol 1:0004. CrossRefGoogle Scholar
  61. Sigsgaard EE, Nielsen IB, Carl H, Krag MA, Knudsen SW, Xing Y, Holm-Hansen TH, Møller PR, Thomsen PF (2017) Seawater environmental DNA reflects seasonality of a coastal fish community. Mar Biol 164:128. CrossRefGoogle Scholar
  62. Sutton TT, Wiebe PH, Madin LP, Bucklin A (2010) Diversity and community structure of pelagic fishes to 5000 m depth in the Sargasso Sea. Deep Sea Res Pt II 57:2220–2233. CrossRefGoogle Scholar
  63. Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH (2012) Environmental DNA. Mol Ecol 21(8):1789–1793. CrossRefPubMedGoogle Scholar
  64. Taguchi T, Miura Y, Krueger D, Sugiura S (2014) Utilizing stomach content and faecal DNA analysis techniques to assess the feeding behaviour of largemouth bass Micropterus salmoides and bluegill Lepomis macrochirus. J Fish Biol 84:1271–1288. CrossRefPubMedGoogle Scholar
  65. Teletchea F (2009) Molecular identification methods of fish species: reassessment and possible applications. Rev Fish Biol Fisher 19:265–293. CrossRefGoogle Scholar
  66. Thalinger B, Oehm J, Mayr H, Obwexer A, Zeisler C, Traugott M (2016) Molecular prey identification in central European piscivores. Mol Ecol Resour 16:123–137. CrossRefPubMedGoogle Scholar
  67. Thomsen PF, Willerslev E (2015) Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18. CrossRefGoogle Scholar
  68. Thomsen PF, Kielgast J, Iversen LL, Møller PR, Rasmussen M, Willerslev E (2012a) Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7:e41732. CrossRefPubMedPubMedCentralGoogle Scholar
  69. Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E (2012b) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21:2565–2573. CrossRefPubMedGoogle Scholar
  70. Thomsen PF, Møller PR, Sigsgaard EE, Knudsen SW, Jørgensen OA, Willerslev E (2016) Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS ONE 11:e0165252. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tyler HR, Pearcy WG (1975) The feeding habits of three species of lanternfishes (family Myctophidae) off Oregon, USA. Mar Biol 32:7–11. CrossRefGoogle Scholar
  72. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res 40:e115. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Valentini A, Miquel C, Nawaz MA, Bellemain E, Coissac E, Pompanon F, Gielly L, Cruaud C, Nascetti G, Wincker P, Swenson JE, Taberlet P (2009) New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Mol Ecol Resour 9:51–60. CrossRefPubMedGoogle Scholar
  74. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci 360:1847–1857. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer–BLAST: a tool to design target–specific primers for polymerase chain reaction. BMC Bioinform 13:134. CrossRefGoogle Scholar
  76. Yoccoz NG (2012) The future of environmental DNA in ecology. Mol Ecol 21:2031–2038. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section for Evolutionary Genomics, Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of BioscienceAarhus UniversityAarhus CDenmark
  3. 3.Section for Ocean Ecology and Climate, DTU AquaTechnical University of DenmarkCharlottenlundDenmark

Personalised recommendations