Marine Biology

, Volume 162, Issue 8, pp 1685–1693 | Cite as

Determination of squid age using upper beak rostrum sections: technique improvement and comparison with the statolith

  • Bi Lin Liu
  • Xin Jun ChenEmail author
  • Yong Chen
  • Guan Yu Hu


Analysis of growth increments in beak rostrum sagittal sections (RSSs) has been increasingly used for estimating octopus age. In this study, we develop an effective method to process and read the RSS of four oceanic ommastrephid squid species (Dosidicus gigas, Ommastrephes bartramii, Illex argentinus and Sthenoteuthis oualaniensis) and validate the daily deposition of the increments by comparing to corresponding statolith-determined ages. The proposed method of processing yielded readable rates ranging from 42.9 % in I. argentinus to 71.7 % in D. gigas for samples from I. argentinus to D. gigas. The high precision of the increment readings with low independent counting coefficient of variation indicates that the processing and counting methods used are reliable. This study suggests that the RSS of the upper beak is an appropriate tool for estimating the age of D. gigas, O. bartramii and perhaps S. oualaniensis, although erosion of the rostral region may result in an underestimation of squid ages.


Section Plane Growth Increment Increment Width Squid Species Daily Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by National Nature Science Foundation of China (NSFC 41306127 and NSFC41276156), National Nature Science Foundation of Shanghai (No. 13ZR1419700), the Innovation Program of Shanghai Municipal Education Commission (No. 13YZ091), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20133104120001) and Shanghai Universities First-class Disciplines Project (Fisheries). Y. Chen’s involvement was supported by Shanghai 1000 Talent Plan Program and SHOU International Center for Marine Sciences.


  1. Arkhipkin AI (1993) Age, growth, stock structure and migratory rate of pre-spawning short-finned squid Illex argentinus based on statolith ageing investigations. Fish Res 16(4):313–338CrossRefGoogle Scholar
  2. Arkhipkin AI, Shcherbich ZN (2012) Thirty years’ progress in age determination of squid using statoliths. J Mar Biol Assoc UK 92(6):1389–1398CrossRefGoogle Scholar
  3. Bárcenas GV, Perales-Raya C, Bartolomé A, Almansa E, Rosas C (2014) Age validation in Octopus maya (Voss and Solís, 1966) by counting increments in the beak rostrum sagittal sections of known age individuals. Fish Res 152:93–97CrossRefGoogle Scholar
  4. Bettencourt V, Guerra A (2001) Age studies based on daily growth increments in statoliths and growth lamellae in cuttlebone of cultured Sepia officinalis. Mar Biol 139:327–334CrossRefGoogle Scholar
  5. Bizikov VA (1991) A new method of squid age determination using the gladius. In: Jereb P, Ragonese S, von Boletzky S (eds) Squid age determination using statoliths: proceedings of the international workshop of the Instituto di Tecnologia della Pesca e del Pescato. N.T.R.-I.T.T.P. Special Publication, 1, pp 39–51Google Scholar
  6. Canali E, Ponte G, Belcari P, Rocha F, Fiorito G (2011) Evaluating age in Octopus vulgaris: estimation, validation and seasonal differences. Mar Ecol Prog Ser 441:141–149CrossRefGoogle Scholar
  7. Castanhari G, Tomás ARG (2012) Beak increment counts as a tool for growth studies of the common octopus Octopus vulgaris in Southern Brazil. Bol Inst Pesca São Paulo 38:323–331Google Scholar
  8. Chen XJ, Lu HJ, Liu BL, Yong C (2011) Age, growth and population structure of jumbo flying squid, Dosidicus gigas, based on statolith microstructure off the Exclusive Economic Zone of Chilean waters. J Mar Biol Assoc UK 91(1):229–235CrossRefGoogle Scholar
  9. Chung MT, Wang CH (2013) Age validation of the growth lamellae in the cuttle bone from cultured Sepia pharaonis at different stages. J Exp Mar Biol Ecol 447:132–137CrossRefGoogle Scholar
  10. Clarke MR (1965) “Growth rings” in the beaks of the squid Moroteuthis ingens (Oegopsida: Onychoteuthidae). Malacologia 3(2):287–307 Google Scholar
  11. Clarke MR (1986) A handbook for the identification of cephalopod beaks. Clarendon Press, Oxford, p 273Google Scholar
  12. Clarke MR (1993) Age determination and common sense—a free discussion on difficulties encountered by the author. In: Okutani T, O’Dor RK, Kubodera T (eds) Recent advances in cephalopod fisheries biology. Tokai University Press, Tokyo, pp 670–678Google Scholar
  13. Clarke MR (1996) The role of cephalopods in the world’s oceans. Philos T R Soc B 351:977–1112Google Scholar
  14. Csirke J (2005) Review of the state of world marine fishery resources. FAO Fisheries Technical Paper 457Google Scholar
  15. Dawe EG, Natsukari Y (1991) Light microscopy. In: Jereb P, Ragonese S, von Boletzky S (eds) Squids age determinations using statoliths: proceedings of the international workshop of the Instituto di Tecnologia della Pesca e del Pescato. N.T.R.-I.T.T.P. Special Publication, vol 1, pp 83–95Google Scholar
  16. Doubleday ZA, Semmens JM (2011) Quantification of the age-pigment lipofuscin in known-age octopus (Octopus pallidus): a potential tool for age determination. J Exp Mar Biol Ecol 397:8–12CrossRefGoogle Scholar
  17. Doubleday ZA, Semmens JM, Pecl G, Jackson GD (2006) Assessing the validity of stylets as ageing tools in Octopus pallidus. J Exp Mar Biol Ecol 338:35–42CrossRefGoogle Scholar
  18. Hermosilla CA, Rocha F, Fiorito G, González ÁF, Guerra Á (2010) Age validation in common octopus Octopus vulgaris using stylet increment analysis. ICES J Mar Sci 67:1458–1463Google Scholar
  19. Hernández-López JL, Castro-Hernández JJ, Hernández-García V (2001) Age determined from the daily deposition of concentric rings on common octopus (Octopus vulgaris) beaks. Fish B-NOAA 99:679–684Google Scholar
  20. Hurley GV, Odense PH, O’Dor RK, Dawe EG (1985) Strontium labelling for verifying daily growth increments in the statolith of the short-finned squid (Illex illecebrosus). Can J Fish Aquat Sci 42:380–383CrossRefGoogle Scholar
  21. Iglesias J, Fuentes L, Villanueva R (2014) Cephalopod culture. Springer Press, New York, p 493CrossRefGoogle Scholar
  22. Jackson GD (1994) Application and future potential of statoliths increment analysis in squids and sepioids. Can J Fish Aquat Sci 51:2612–2625CrossRefGoogle Scholar
  23. Jackson GD (2004) Advances in defining the life histories of myopsid squid. Mar Fresh Res 55:357–365CrossRefGoogle Scholar
  24. Jereb P, Roper CFE (2010) Cephalopods of the world: an annotated and illustrated catalogue of cephalopod species known to date. Myopsid and Oegopsid squids, vol 2, pp 649Google Scholar
  25. Lipinski MR (1978) The age of the squid Illex illecebrosus (LeSueur, 1821) from their statoliths. ICNAF Research Document, 78/II/15Google Scholar
  26. Liu BL, Chen XJ, Zhong JS (2009) Age, growth and population structure of squid Sthenoteuthis oualaniensis in northwest Indian Ocean by statolith microstructure. J Dalian Fish Univ 24:206–212Google Scholar
  27. Liu BL, Chen XJ, Li JH, Fang Z (2014) Review on age and growth of cephalopod using their beaks. Chin J Shanghai Ocean Univ 23(6):930–936Google Scholar
  28. Luo LQ, Wei HQ (2011) Statistics. Chinese Financial and Economic Press, Bei Jing, p 294Google Scholar
  29. Mereu M, Stacca D, Cannas R, Cuccu D (2011) On the growth rings on Histioteuthis bonnellii (Férussac, 1835) upper beaks. Biol Mar Mediterr 18(1):124–127Google Scholar
  30. Nakamura Y, Sakurai Y (1991) Validation of daily growth increments in statoliths of Japanese common squid Todarodes pacificus. Nippon Suisan Gakk 57:2007–2011CrossRefGoogle Scholar
  31. Oosthuizen A (2003) A development and management framework for a new Octopus vulgaris Fishery in South Africa. PhD thesis, Rhodes University, pp 183Google Scholar
  32. Perales-Raya C, Hernández-González CL (1998) Growth lines within the beak microstructure of the Octopus vulgaris Cuvier, 1797. S Afr J Mar Sci 20:135–142CrossRefGoogle Scholar
  33. Perales-Raya C, Bartolomé A, García-Santamaría MT, Pascual-Alayón P, Almansa E (2010) Age estimation obtained from analysis of octopus (Octopus vulgaris Cuvier, 1797) beaks: improvements and comparisons. Fish Res 106:171–176CrossRefGoogle Scholar
  34. Perales-Raya C, Almansa E, Bartolomé A, Felipe BC, Iglesias J, Sánchez FJ, Carrasco JF, Rodríguez C (2014a) Age validation in Octopus vulgaris across the full ontogenetic range: beaks as recorders of live events in octopuses. J Shellfish Res 33(2):1–13CrossRefGoogle Scholar
  35. Perales-Raya C, Jurado-Ruzafa A, Bartolomé A, Duque V, Carrasco MN, Fraile-Nuez E (2014b) Age of spent Octopus vulgaris and stress mark analysis using beaks of wild individuals. Hydrobiologia 725:105–114CrossRefGoogle Scholar
  36. Perez JAA, O’Dor RK, Beck P, Dawe EG (1996) Evaluation of gladius dorsal surface structure for age and growth studies of the short-finned squid, Illex illecebrosus (Teuthoidea: Ommastrephidae). Can J Fish Aquat Sci 53:2837–2846Google Scholar
  37. Rodríguez-Domínguez A, Rosas C, Méndez-Loeza I, Markaida U (2013) Validation of growth increments in stylet, beaks and lenses as aging tools in Octopus maya. J Exp Mar Biol Ecol 449:194–199CrossRefGoogle Scholar
  38. Sakai M, Brunetti N, Bower J, Elena B, Ichii T, Ivanovic M, Sakurai Y, Wakabayashi T, Wakabayashi T, Yatsu A (2007) Daily growth increments in upper beak of five ommastrephid paralarvae, Illex argentinus, Ommastrephes bartramii, Dosidicus gigas, Sthenoteuthis oualaniensis, Todarodes pacificus. Squids Resour Res Conf 9:1–7Google Scholar
  39. Uozumi Y, Ohara H (1993) Age and growth of Nototodarus sloanii(Cephalopoda: Oegopsida) based on daily increment counts in statoliths. Nippon Suisan Gakk 59(9):1469–1477CrossRefGoogle Scholar
  40. Villanueva R (2000) Effect of temperature on statolith growth of the European squid Loligo vulgaris during early life. Mar Biol 136:449–460CrossRefGoogle Scholar
  41. Yatsu A, Midorikawa S, Shimada T, Uozumi Y (1997) Age and growth of the neon flying squid, Ommastrephes bartramii, in the North Pacific Ocean. Fish Res 29:257–270CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bi Lin Liu
    • 1
    • 2
    • 3
    • 4
    • 5
  • Xin Jun Chen
    • 1
    • 2
    • 3
    • 5
    Email author
  • Yong Chen
    • 1
    • 3
    • 4
  • Guan Yu Hu
    • 1
    • 3
  1. 1.College of Marine SciencesShanghai Ocean UniversityLingang New CityChina
  2. 2.The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries ResourcesMinistry of EducationLingang New CityChina
  3. 3.Collaborative Innovation Center for Distant-Water FisheriesLingang New CityChina
  4. 4.School of Marine SciencesUniversity of MaineOronoUSA
  5. 5.National Engineering Research Center for Oceanic FisheriesLingang New CityChina

Personalised recommendations