Advertisement

Marine Biology

, Volume 162, Issue 8, pp 1611–1624 | Cite as

Discordance between nuclear and mitochondrial DNA analyses of population structure in closely related triplefin fishes (Forsterygion lapillum and F. capito, F. Tripterygiidae) supports speciation with gene flow

  • M. RaboneEmail author
  • S. D. Lavery
  • A. Little
  • K. D. Clements
Original Paper

Abstract

Unusually for a marine fish clade, most New Zealand triplefin species display broad, sympatric geographic distributions. Explaining diversification in this species flock therefore requires a detailed understanding of patterns of gene flow. Here, we test the patterns reported in previous studies by examining population structure over a range of spatial scales in Forsterygion lapillum and at regional scales in F. capito using microsatellites. Samples were collected between 2000 and 2009, and between 35°56′S and 46°36′S. The microsatellite findings differ from previous mtDNA results in several key respects. First, there is no support for a genetically distinct population at Banks Peninsula, as was seen with mtDNA. Second, in contrast to mtDNA, the two triplefin species exhibited very similar patterns of population structuring at regional scales (102–103 km), suggesting that year-round spawning only in F. lapillum does not have a significant effect on population connectivity. Third, while there is evidence of isolation by distance in both species, there are no clear phylogeographic breaks, and far less structure is evident than in the mtDNA data. Further, we found a lack of structure over local scales in F. lapillum, suggesting extensive gene flow over tens of kilometres. Our findings suggest a pattern of stepping-stone dispersal and contiguous gene flow, sometimes over large distances, supporting the hypothesis that factors other than geographic isolation, such as ecological speciation with gene flow, have been important in the evolution of this group.

Keywords

Gene Flow Reef Fish Allelic Richness Larval Dispersal Population Connectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Thanks to Andrew Stuart, Danielle Hannan, Cecile Croq, Dave Todd, Tony Hickey, and Zoe Hilton for sample collection at various locations in New Zealand. The study was funded by the University of Auckland Faculty of Science Research Development Fund. Thanks also to Craig Newton at ATC Genetics for primer design, Vibha Thakur for laboratory support, and Kristine Boxen for running samples at the sequencing facility in the University of Auckland.

Supplementary material

227_2015_2697_MOESM1_ESM.pdf (442 kb)
Supplementary material 1 (PDF 442 kb)

References

  1. Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300Google Scholar
  2. Bernardi G (2013) Speciation in fishes. Mol Ecol 22:5487–5502. doi: 10.1111/mec.12494 CrossRefGoogle Scholar
  3. Bernardi G, Ramon ML, Alva-Campbell Y, McCosker JE, Bucciarelli G, Garske LE, Victor BC, Crane NL (2014) Darwin’s fishes: phylogeography of Galápagos Islands reef fishes. Bull Mar Sci 90:533–549. doi: 10.5343/bms.2013.1036 CrossRefGoogle Scholar
  4. Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Hered 93:153–154. doi: 10.1093/jhered/93.2.153 CrossRefGoogle Scholar
  5. Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273. doi: 10.1111/j.1365-294X.2004.02346.x CrossRefGoogle Scholar
  6. Bowen BW, Rocha LA, Toonen RJ, Karl SA (2013) The origins of tropical marine biodiversity. Trends Ecol Evol 28:266–359. doi: 10.1016/j.tree.2013.01.018 CrossRefGoogle Scholar
  7. Bowen BW, Shanker K, Yasuda N, Malay MCMD, von der Heyden S, Paulay G, Rocha LA, Selkoe KA, Barber PH, Williams ST, Lessios HA, Crandall ED, Bernardi G, Meyer CP, Carpenter KE, Toonen RJ (2014) Phylogeography unplugged: comparative surveys in the genomics era. Bull Mar Sci 90:13–46. doi: 10.5343/bms.2013.1007 CrossRefGoogle Scholar
  8. Briggs JC, Bowen BW (2013) Marine shelf habitat: biogeography and evolution. J Biogeogr 40:1023–1035. doi: 10.1111/jbi.12082 CrossRefGoogle Scholar
  9. Carreras-Carbonell J, Macpherson E, Pascual M (2006) Population structure within and between subspecies of the Mediterranean triplefin fish Tripterygion delaisi revealed by highly polymorphic microsatellite loci. Mol Ecol 15:3527–3539. doi: 10.1111/j.1365-294X.2006.03003.x CrossRefGoogle Scholar
  10. Chao A, Jost L, Chiang SC, Jiang YH, Chazdon RL (2008) A two-stage probabilistic approach to multiple community similarity indices. Biometrics 64:1178–1186. doi: 10.1111/j.1541-0420.2008.01010.x CrossRefGoogle Scholar
  11. Clements KD (2003) Triplefins. The ecology of New Zealand’s rocky reefs. In: Andrew N, Francis M (eds) The living reef. Craig Potton Publishing, Nelson, pp 160–167Google Scholar
  12. Cowman PF, Bellwood DR (2013) The historical biogeography of coral reef fishes: global patterns of origination and dispersal. J Biogeogr 40:209–224. doi: 10.1111/jbi.12003 CrossRefGoogle Scholar
  13. Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557. doi: 10.1111/j.1755-0998.2009.02801.x CrossRefGoogle Scholar
  14. Croq C (2009) Phenotypic variation in the common triplefin fish. Master thesis, University of Auckland, AucklandGoogle Scholar
  15. Crow KD, Munehara H, Bernardi G (2010) Sympatric speciation in a genus of marine reef fishes. Mol Ecol 19:2089–2105. doi: 10.1111/j.1365-294X.2010.04611.x CrossRefGoogle Scholar
  16. DiBattista JD, Rocha LA, Craig MT, Feldheim KA, Bowen BW (2012) Phylogeography of two closely related Indo-Pacific Butterflyfishes reveals divergent evolutionary histories and discordant results from mtDNA and microsatellites. J Hered 103:617–629. doi: 10.1093/jhered/ess056 CrossRefGoogle Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  18. Flanders J, Jones G, Benda P, Dietz C, Zhang S, Li G, Sharifi M, Rossiter SJ (2009) Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum: contrasting results from mitochondrial and microsatellite data. Mol Ecol 18:306–318. doi: 10.1111/j.1365-294X.2008.04021.x CrossRefGoogle Scholar
  19. Fulton CJ, Binning SA, Wainwright PC, Bellwood DR (2013) Wave-induced abiotic stress shapes phenotypic diversity in a coral reef fish across a geographical cline. Coral Reefs 32:685–689. doi: 10.1007/s00338-013-1039-8 CrossRefGoogle Scholar
  20. Gaither MR, Bernal MA, Coleman RR, Bowen BW, Jones SA, Simison WB, Rocha LA (2015) Genomic signatures of geographic isolation and natural selection in coral reef fishes. Mol Ecol. doi: 10.1111/mec.13129 CrossRefGoogle Scholar
  21. Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University Press, New JerseyGoogle Scholar
  22. Gerlach G, Jueterbock A, Kraemer P, Depperman J, Harmand P (2010) Calculations of population differentiation based on GST and D: forget GST but not all of statistics! Mol Ecol 19:3845–3852. doi: 10.1111/j.1365-294X.2010.04784.x CrossRefGoogle Scholar
  23. Goldstien SJ, Schiel DR, Gemmell NJ (2006) Comparative phylogeography of coastal limpets across a marine disjunction in New Zealand. Mol Ecol 15:3259–3268. doi: 10.1111/j.1365-294X.2006.02977.x CrossRefGoogle Scholar
  24. Gonzalez EJ, Zardoya R (2007) Relative role of life-history traits and historical factors in shaping genetic population structure of sardines (Sardina pilchardus). BMC Evol Biol 7:1–12. doi: 10.1186/1471-2148-7-197 CrossRefGoogle Scholar
  25. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486CrossRefGoogle Scholar
  26. Goudet J, Raymond M, de Meüss T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940PubMedPubMedCentralGoogle Scholar
  27. Hannan D (2005) Phylogeography and hybridisation in Grahamina capito (Family Tripterygiidae). Master Thesis, University of Auckland, AucklandGoogle Scholar
  28. Hardy GS (1989) The genus Forsterygion Whitley & Phillipps, 1939 (Pisces: Tripterygiidae) in New Zealand and Australia, with descriptions of two new species. J Nat Hist 23:491–512. doi: 10.1080/00222938900770291 CrossRefGoogle Scholar
  29. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638. doi: 10.1111/j.0014-3820.2005.tb01814.x CrossRefGoogle Scholar
  30. Hellberg ME (2007) Footprints on water: the genetics wake of dispersal among reefs. Coral Reefs 26:463–473. doi: 10.1007/s00338-007-0205-2 CrossRefGoogle Scholar
  31. Hemmer-Hansen J, Nielsen EE, Therkildsen NO, Taylor MI, Ogden R, Geffen AJ, Bekkevold D, Helyar S, Pampoulie C, Johansen T, Fishpoptrace Consortium, Carvalho GR (2013) A genomic island linked to ecotype divergence in Atlantic cod. Mol Ecol 22:2653–2667. doi: 10.1111/mec.12284 CrossRefGoogle Scholar
  32. Hickerson MJ, Cunningham CW (2005) Contrasting quaternary histories in an ecologically divergent sister pair of low-dispersing intertidal fish (Xiphister) revealed by multilocus DNA analysis. Evolution 59:344–360. doi: 10.1111/j.0014-3820.2005.tb00994.x CrossRefGoogle Scholar
  33. Hickey A (2004) Evolution of New Zealand’s triplefin fish (Family Tripterygiidae). PhD Thesis, University of AucklandGoogle Scholar
  34. Hickey AJR, Lavery SD, Hannan DA, Baker CS, Clements KD (2009) New Zealand’s triplefin fish (family Tripterygiidae): contrasting population structure and mtDNA diversity within a marine species flock. Mol Ecol 18:680–696. doi: 10.1111/j.1365-294X.2008.04052.x CrossRefGoogle Scholar
  35. Hickford MJH, Schiel DR (2003) Comparative dispersal of larvae from demersal versus spawning fishes. Mar Ecol Prog Ser 252:255–271. doi: 10.3354/meps252255 CrossRefGoogle Scholar
  36. Hilton Z (2010) Physiological adaptation in the radiation of New Zealand triplefin fishes (Family Tripterygiidae). PhD Thesis, University of Auckland, AucklandGoogle Scholar
  37. Hilton Z, Wellenreuther M, Clements KD (2008) Physiology underpins habitat partitioning in a sympatric sister-species pair of intertidal fishes. Funct Ecol 22:1108–1117. doi: 10.1111/j.1365-2435.2008.01465.x CrossRefGoogle Scholar
  38. Horne J (2014) Thinking outside the barrier: neutral and adaptive divergence in Indo-Pacific coral reef faunas. Ecol Evol 28:991–1002. doi: 10.1007/s10682-014-9724-9 CrossRefGoogle Scholar
  39. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332. doi: 10.1111/j.1755-0998.2009.02591.x CrossRefGoogle Scholar
  40. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web based service. BMC Genet 6:13. doi: 10.1186/1471-2156-6-13 CrossRefGoogle Scholar
  41. Jones GP (2013) Ecology of rocky reef fish of northeastern New Zealand: 50 years on. NZ J Mar Freshwater Res 47:334–359. doi: 10.1080/00288330.2013.812569 CrossRefGoogle Scholar
  42. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. doi: 10.1111/j.1365-294X.2008.03887.x CrossRefGoogle Scholar
  43. Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543. doi: 10.1023/B:COGE.0000041021.91777.1a CrossRefGoogle Scholar
  44. Kalinowski ST (2005) HP-Rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. doi: 10.1111/j.1471-8286.2004.00845.x CrossRefGoogle Scholar
  45. Kalinowski ST (2006) HW-QuickCheck: an easy to use computer program for checking genotypes for agreement with Hardy-Weinberg expectations. Mol Ecol Notes 6:974–979. doi: 10.1111/j.1471-8286.2006.01456.x CrossRefGoogle Scholar
  46. Kalinowski ST, Taper ML (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet 7:991–995. doi: 10.1007/s10592-006-9134-9 CrossRefGoogle Scholar
  47. Kingsford MJ (1988) The early life history of fish in coastal waters of Northern New Zealand: a review. Z J Mar Freshwater Res 22:463–479. doi: 10.1080/00288330.1988.9516316 CrossRefGoogle Scholar
  48. Knight ME, Van Oppen MJH, Smith HL, Rico C, Hewitt GM, Turner GF (1999) Evidence for male-biased dispersal in Lake Malawi cichlids from microsatellites. Mol Ecol 8:1521–1527CrossRefGoogle Scholar
  49. Kohn YY, Clements KD (2011) Pelagic larval duration and population connectivity in New Zealand triplefin fishes (Tripterygiidae). Environ Biol Fish 91:275–286. doi: 10.1007/s10641-011-9777-3 CrossRefGoogle Scholar
  50. Lemaire C, Versini J-J, Bonhomme F (2004) Maintenance of genetic differentiation across a transition zone in the sea: discordance between nuclear and cytoplasmic markers. J Evol Biol 18:70–80. doi: 10.1111/j.1420-9101.2004.00828.x CrossRefGoogle Scholar
  51. Limborg MT, Helyar SJ, De Bruyn M, Taylor MI, Nielsen EE, Ogden R, Carvalho GR, FPT Consortium, Bekkevold D (2012) Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol Ecol 21:3686–3703. doi: 10.1111/j.1365-294X.2012.05639.x CrossRefGoogle Scholar
  52. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  53. Nielsen EE, Hemmer-Hansen J, Poulsen NA, Loeschcke V, Moen T, Johansen T, Mittelholzer C, Taranger G-L, Ogden R, Carvalho GR (2009) Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evol Biol 9:276–286. doi: 10.1186/1471-2148-9-276 CrossRefGoogle Scholar
  54. Nikula R, Spencer HG, Water JM (2011) Comparison of population-genetic structuring in congeneric kelp- versus rock-associated snails: a test of a dispersal-by-rafting hypothesis. Ecol Evol 1:169–180. doi: 10.1002/ece3.16 CrossRefGoogle Scholar
  55. Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572CrossRefGoogle Scholar
  56. Patzner RA, Hastings PA, Springer VG, Wirtz P, Gonçalves EJ (2009) List of valid species of blennies. In: Patzner RA, Gonçalves EJ, Hastings PA (eds) The biology of blennies. Science Publishers, Enfield, pp 443–473CrossRefGoogle Scholar
  57. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  58. Peijenburg KTCA, Fauvelot C, Breeuwer JAJ, Menken SBJ (2006) Spatial and temporal genetic structure of the planktonic Sagitta setosa (Chaetognatha) in European seas as revealed by mitochondrial and nuclear DNA markers. Mol Ecol 15:3319–3338. doi: 10.1111/j.1365-294X.2006.03002.x CrossRefGoogle Scholar
  59. Pilgrim BL, Perry RC, Keefe DG, Perry EA, Marshall HD (2012) Microsatellite variation and genetic structure of brook trout (Salvelinus fontinalis) populations in Labrador and neighbouring Atlantic Canada: evidence for ongoing gene flow and dual routes of post-Wisconsinan colonisation. Ecol Evol 2:885–898. doi: 10.1002/ece3.200 CrossRefGoogle Scholar
  60. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  61. Raventós N, Macpherson E (2001) Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar Biol 138:1115–1120. doi: 10.1007/s002270000535 CrossRefGoogle Scholar
  62. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenism. J Hered 86:248–249CrossRefGoogle Scholar
  63. Rice WR (1989) Analysing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  64. Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014) Microgeographic adaptation and the spatial scale of evolution. Trends Ecol Evol 29:165–176. doi: 10.1016/j.tree.2014.01.002 CrossRefGoogle Scholar
  65. Rocha LA, Bowen BW (2008) Speciation in coral reef fishes. J Fish Biol 72:1101–1121. doi: 10.1111/j.1095-8649.2007.01770.x CrossRefGoogle Scholar
  66. Rocha LA, Robertson DR, Roman J, Bowen BW (2005) Ecological speciation in coral reef fishes. Proc R Soc B 272:573–579. doi: 10.1098/2004.3005 CrossRefGoogle Scholar
  67. Ross PM, Hogg ID, Pilditch CA, Lundquist CJ, Wilkins RJ (2012) Population genetic structure of the New Zealand estuarine clam, Austrovenus stutchburyi (Bivalvia: Veneridae) reveals population subdivision and partial congruence with biogeographic boundaries. Estuar Coast 35:143–154. doi: 10.1007/s12237-011-9429-z CrossRefGoogle Scholar
  68. Rousset F (2008) Genepop ‘007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x CrossRefGoogle Scholar
  69. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology, Humana Press, New Jersey, pp 365–386Google Scholar
  70. Sala-Bozano M, Ketmaier V, Mariani S (2009) Contrasting signals from multiple markers illuminate population connectivity in a marine fish. Mol Ecol 18:4811–4826. doi: 10.1111/j.1365-294X.2009.04404.x CrossRefGoogle Scholar
  71. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New YorkGoogle Scholar
  72. Sharpe DMT, Räsänen K, Berner D, Hendry AP (2008) Genetic and environmental contributions to the morphology of lake and stream stickleback: implications for gene flow and reproductive isolation. Evol Ecol Res 10:849–866Google Scholar
  73. Swearer SE, Shima JS (2010) Regional variation in larval retention and dispersal drives recruitment patterns in a temperate reef fish. Mar Ecol Prog Ser 417:229–236. doi: 10.3354/meps08801 CrossRefGoogle Scholar
  74. Trewick SA, Bland KJ (2012) Fire and slice: paleogeography for biogeography at New Zealand’s North Island/South Island juncture. J R Soc NZ Geo 42:153–183. doi: 10.1080/03036758.2010.549493 CrossRefGoogle Scholar
  75. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  76. Veale AJ, Lavery SD (2012) The population genetic structure of the Waratah anemone (Actinia tenebrosa). NZ J Mar Freshwater Res 46:523–536. doi: 10.1080/00288330.2012.730053 CrossRefGoogle Scholar
  77. Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439. doi: 10.1111/j.1365-294X.2006.02890.x CrossRefGoogle Scholar
  78. Wei K, Wood AR, Gardner JPA (2013) Seascape genetics of the New Zealand greenshell mussel: sea surface temperature explains macrogeographic scale genetic variation. Mar Ecol Prog Ser 477:107–121. doi: 10.3354/meps10158 CrossRefGoogle Scholar
  79. Wellenreuther M, Clements KD (2007) Reproductive isolation in temperate reef fishes. Mar Biol 152:619–630. doi: 10.1007/s00227-007-0713-1 CrossRefGoogle Scholar
  80. Wellenreuther M, Clements KD (2008) Determinants of habitat association in a clade of sympatric marine fishes. Mar Biol 154:393–402. doi: 10.1007/s00227-008-0940-0 CrossRefGoogle Scholar
  81. Wellenreuther M, Barrett PT, Clements KD (2007) Ecological diversification in habitat use by subtidal triplefin fishes (Tripterygiidae). Mar Ecol Prog Ser 330:235–246. doi: 10.3354/meps330235 CrossRefGoogle Scholar
  82. Wellenreuther M, Barrett PT, Clements KD (2009) The evolution of habitat specialisation in a group of marine triplefin fishes. Evol Ecol 23:557–568. doi: 10.1007/s10682-008-9255-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.Institute of Marine ScienceUniversity of AucklandAucklandNew Zealand
  3. 3.Life Sciences DepartmentNatural History MuseumLondonUK

Personalised recommendations