Marine Biology

, Volume 162, Issue 8, pp 1597–1610 | Cite as

Larval diet alters larval growth rates and post-metamorphic performance in the marine gastropod Crepidula fornicata

  • Jan A. PechenikEmail author
  • Abigail S. Tyrell
Original Paper


Some larval experiences can produce “latent effects” on post-metamorphic growth or survival. While it is known that periods of starvation during larval development can cause such latent effects, the effect of larval diet on post-metamorphic growth has not been studied. As global climate change and ocean acidification are expected to decrease phytoplankton concentrations and alter both phytoplankton species composition and nutritional characteristics, we examined the impact of 3 phytoplankton species (Isochrysis galbana, clone T-ISO; Pavlova lutheri, clone MONO; and Dunaliella tertiolecta, clone DUN) on larval growth and subsequent post-metamorphic fitness in the slippersnail Crepidula fornicata. Once larvae metamorphosed, the juveniles were all reared on the diet that produced the fastest growth, T-ISO, to look for latent effects of larval diet on juvenile growth. In all experiments, larvae grew most quickly on T-ISO; diet did not affect relative rates of shell and tissue growth. In 2 of the 4 experiments conducted on the effects of diet quality, larvae reared on T-ISO metamorphosed into juveniles that grew significantly faster than those that had been raised on the other phytoplankton species, indicating clear latent effects of dietary experience and suggesting parent-related genetic variation in susceptibility to this type of stress. Rearing larvae at a very low food concentration of T-ISO (1 × 104 cells ml−1) until metamorphosis also produced severe latent effects on juvenile growth, reducing juvenile growth rates by more than 30 %. These data provide yet another example of how stresses experienced during larval development can influence post-metamorphic performance, and add another level of complexity to attempts at predicting the future consequences of environmental change on marine community structure and species interactions.


Phytoplankton Larval Development Phytoplankton Species Larval Mortality Isochrysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Kelly Boisvert and Melissa MacEwen for their careful assistance in data collection during parts of this study, and two reviewers for their helpful comments and suggestions.


  1. Anger K (1995) Starvation resistance in larvae of a semi-terrestrial crab, Sesarma curacaoense (Decapoda: Grapsidae). J Exp Mar Biol Ecol 187:161–174. doi: 10.1016/0022-0981(94)00178-G Google Scholar
  2. Basch LV (1996) Effects of algal and larval densities on development and survival of asteroid larvae. Mar Biol 126:693–701. doi: 10.1007/BF00351336 Google Scholar
  3. Bashevkin SM, Pechenik JA (2015) The interactive influence of temperature and salinity on larval and juvenile growth in the gastropod Crepidula fornicata. J Exp Mar Biol Ecol 470:78–91. doi: 10.1016/j.jembe.2015.05.004 Google Scholar
  4. Blanchard M (1997) Spread of the slipper limpet Crepidula fornicata (L. 1758) in Europe. Current state and consequences. Sci Mar 61(Suppl 2):109–118Google Scholar
  5. Bohn K, Richardson C, Jenkins S (2012) The invasive gastropod Crepidula fornicata: reproduction and recruitment in the intertidal at its northernmost range in Wales, UK, and implications for its secondary spread. Mar Biol 159:2091–2103. doi: 10.1007/s00227-012-1997-3 Google Scholar
  6. Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591–596. doi: 10.1038/nature09268 Google Scholar
  7. Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331. doi: 10.1016/S0044-8486(96)01501-3 Google Scholar
  8. Burkhardt S, Riebesell U (1997) CO2 availability affects elemental composition (C:N:P) of the marine diatom Skeletonema costatum. Mar Ecol Prog Ser 155:67–76. doi: 10.3354/meps155067 Google Scholar
  9. Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol Annu Rev 49:1–42. doi: 10.1201/b11009-2 Google Scholar
  10. Chiu JMY, Ng TYT, Wang WX, Thiyagarajan V, Qian PY (2007) Latent effects of larval food limitation on filtration rate, carbon assimilation and growth in juvenile gastropod Crepidula onyx. Mar Ecol Prog Ser 343:173–182. doi: 10.3354/meps06928 Google Scholar
  11. Chiu JMY, Wang H, Thiyagarajan V, Qian PY (2008) Differential timing of larval starvation effects on filtration rate and growth in juvenile Crepidula onyx. Mar Biol 154:91–98. doi: 10.1007/s00227-007-0902-y Google Scholar
  12. Chuecas L, Riley JP (1969) Component fatty acids of the total lipids of some marine phytoplankton. J Mar Biol Assoc UK 49:97–116. doi: 10.1017/S0025315400046439 Google Scholar
  13. Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466. doi: 10.1146/annurev.marine.010908.163757 Google Scholar
  14. Crisp DJ (1974) Factors influencing the settlement of marine invertebrate larvae. In: Grant PT, Mackie AM (eds) Chemoreception in marine organisms. Academic Press, New York, pp 177–265Google Scholar
  15. De Block M, Stoks R (2005) Fitness effects from egg to reproduction: bridging the life history transition. Ecology 86:185–197Google Scholar
  16. Diederich CM, Jarrett JN, Chaparro OR, Segura CJ, Arellano SM, Pechenik JP (2011) Low salinity stress experienced by larvae does not affect post-metamorphic growth or survival in three calyptraeid gastropods. J Exp Mar Biol Ecol 397:94–105. doi: 10.1016/j.jembe.2010.11.019 Google Scholar
  17. Eyster LS, Pechenik JA (1988) Comparison of growth, respiration, and feeding of juvenile Crepidula fornicata (L.) following natural or KCl-triggered metamorphosis. J Exp Mar Biol Ecol 118:269–279. doi: 10.1016/0022-0981(88)90078-0 Google Scholar
  18. Gardner DS, Ozanne SE, Sinclair KD (2009) Effect of the early-life nutritional environment on fecundity and fertility of mammals. Philos Trans R Soc B 364:3419–3427. doi: 10.1098/rstb.2009.0121 Google Scholar
  19. Gebauer P, Paschke K, Anger K (1999) Costs of delayed metamorphosis: reduced growth and survival in early juveniles of an estuarine grapsid crab, Chasmagnathus granulata. J Exp Mar Biol Ecol 238:271–281. doi: 10.1016/S0022-0981(98)00219-6 Google Scholar
  20. Gosselin LA, Qian PY (1997) Juvenile mortality in benthic marine invertebrates. Mar Ecol Prog Ser 146:265–282. doi: 10.3354/meps146265 Google Scholar
  21. Graham EM, Baird AH, Willis BL, Connolly SR (2013) Effects of delayed settlement on post-settlement growth and survival of scleractinian coral larvae. Oecologia 173:431–438. doi: 10.1007/s00442-013-2635-6 PubMedGoogle Scholar
  22. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239PubMedGoogle Scholar
  23. Hansen B (1993) Aspects of feeding, growth and stage development by trochophora larvae of the boreal polychaete Mediomastus fragile (Rasmussen)(Capitellidae). J Exp Mar Biol Ecol 166:273–288. doi: 10.1016/0022-0981(93)90224-C Google Scholar
  24. Hartmann AC, Marhaver KL, Chamberland VF, Sandin SA, Vermeij MJA (2013) Large birth size does not reduce negative latent effects of harsh environments across life stages in two coral species. Ecology 94:1966–1976. doi: 10.1890/13-0161.1 PubMedGoogle Scholar
  25. Hayes GG, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344. doi: 10.1016/j.tree.2005.03.004 Google Scholar
  26. Hettinger A, Sanford E, Hill TM et al (2012) Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. Ecology 93:2758–2768. doi: 10.1890/12-0567.1 PubMedGoogle Scholar
  27. Hettinger A, Sanford E, Hill TM, Lenz EA, Russell AD, Gaylord B (2013) Larval carry-over effects from ocean acidification persist in the natural environment. Glob Change Biol 19:3317–3326. doi: 10.1111/gcb.12307 Google Scholar
  28. Hilbish TJ, Sasada K, Eyster LS, Pechenik JA (1999) Relationship between rates of swimming and growth in veliger larvae: genetic variance and covariance. J Exp Mar Biol Ecol 239:183–193. doi: 10.1016/S0022-0981(99)00009-X Google Scholar
  29. Hinga KR (2002) Effects of pH on coastal marine phytoplankton. Mar Ecol Prog Ser 238:281–300. doi: 10.3354/meps238281 Google Scholar
  30. His E, Seaman MNL (1992) Effects of temporary starvation on the survival, and on subsequent feeding and growth, of oyster (Crassostrea gigas) larvae. Mar Biol 114:277–279. doi: 10.1007/BF00349530 Google Scholar
  31. Hoogstraten A, Timmermans KR (2012) Morphological and physiological effects in Proboscia alata (Bacillariophyceae) grown under different light and CO2 conditions of the modern Southern Ocean. J Phycol 48:559–568. doi: 10.1111/j.1529-8817.2012.01148.x PubMedGoogle Scholar
  32. Hopkins GR, Brodie ED Jr, French SS (2014) Developmental and evolutionary history affect survival in stressful environments. PLoS ONE 9:e95174. doi: 10.1371/journal.pone.0095174 PubMedPubMedCentralGoogle Scholar
  33. Hunt HL, Scheibling RE (1997) Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar Ecol Prog Ser 155:269–301. doi: 10.3354/meps155269 Google Scholar
  34. Jennings LB, Hunt HL (2011) Small macrobenthic invertebrates affect the mortality and growth of early post-settlement sea urchins and sea stars in subtidal cobble habitat. Mar Ecol Prog Ser 431:173–182. doi: 10.3354/meps09131 Google Scholar
  35. Jonsson B, Jonsson N (2014) Early environment influences later performance in fishes. J Fish Biol 85:151–188. doi: 10.1111/jfb.12432 PubMedGoogle Scholar
  36. Kim J-M, Lee K, Shin K, Kang J-H, Lee H-W, Kim M, Jang P-G, Jang M-C (2006) The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnol Oceanogr 51:1629–1636. doi: 10.4319/lo.2006.51.4.1629 Google Scholar
  37. Klinzing MS, Pechenik JA (2000) Evaluating whether velar-lobe size indicates food limitation among larvae of the marine gastropod Crepidula fornicata. J Exp Mar Biol Ecol 252:255–279. doi: 10.1016/S0022-0981(00)00245-8 Google Scholar
  38. Leu E, Daase M, Schulz KG, Stuhr A, Riebesell U (2013) Effect of ocean acidification on the fatty acid composition of a natural plankton community. Biogeosciences 10:1143–1153. doi: 10.5194/bg-10-1143-2013 Google Scholar
  39. Li A, Chiu JMY (2013) Latent effects of hypoxia on the gastropod Crepidula onyx. Mar Ecol Prog Ser 480:145–154. doi: 10.3354/meps10213 Google Scholar
  40. Lucas JS, Costlow JD Jr (1979) Effects of various temperature cycles on the larval development of the gastropod mollusc Crepidula fornicata. Mar Biol 51:111–117. doi: 10.1007/BF00555190 Google Scholar
  41. Marshall DJ, Pechenik JA, Keough MJ (2003) Larval activity levels and delayed metamorphosis affect post-larval performance in the colonial ascidian Diplosoma listerianum. Mar Ecol Prog Ser 246:153–162. doi: 10.3354/meps246153 Google Scholar
  42. Marshall DJ, Allen RM, Crean AJ (2008) The ecological and evolutionary importance of maternal effects in the sea. Oceanogr Mar Biol Ann Rev 46:203–250Google Scholar
  43. McEdward LR, Qian P-Y (2001) Effects of the duration and timing of starvation during larval life on the metamorphosis and initial size of the polychaete Hydroides elegans (Haswell). J Exp Mar Biol Ecol 261:185–197. doi: 10.1016/S0022-0981(01)00272-6 PubMedGoogle Scholar
  44. Merilä J, Svensson E (1997) Are fat reserves in migratory birds affected by condition in early life? J Avian Biol 28:279–286. doi: 10.2307/3676940 Google Scholar
  45. Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323:1470–1473. doi: 10.1126/science.1164533 Google Scholar
  46. Morgan SG (1995) Life and death in the plankton: larval mortality and adaptation. In: McEdward L (ed) Ecology of marine invertebrate larvae. CRC Press, New York, pp 279–321Google Scholar
  47. Ng TYT, Keough MJ (2003) Delayed effects of larval exposure to Cu in the bryozoan Watersipora subtorquata. Mar Ecol Prog Ser 257:77–85. doi: 10.3354/meps257077 Google Scholar
  48. Nicieza AG, Álvarez D, Atienza EMS (2006) Delayed effects of larval predation risk and food quality on anuran juvenile performance. J Evol Biol 19:1092–1103. doi: 10.1111/j.1420-9101.2006.01100.x PubMedGoogle Scholar
  49. O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, Weiss JM (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci USA 104:1266–1271PubMedGoogle Scholar
  50. Paine RT (1964) Ash and calorie determinations of sponge and opisthobranch tissues. Ecology 45:384–387. doi: 10.2307/1933856 Google Scholar
  51. Pechenik JA (1980) Relationship between rate of development and duration of larval life in larvae of the marine prosobranch gastropod Crepidula fornicata. J Exp Mar Biol Ecol 74:241–257Google Scholar
  52. Pechenik JA (1987) Environmental influences on larval survival and growth. In: Giese AC, Pearse JS (eds) Reproduction of Marine Invertebrates, vol 9. Blackwell, New York, pp 551–608Google Scholar
  53. Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar Ecol Prog Ser 177:269–297. doi: 10.3354/meps177269 Google Scholar
  54. Pechenik JA (2006) Larval experience and latent effects–metamorphosis is not a new beginning. Integr Comp Biol 46:323–333. doi: 10.1093/icb/icj028 PubMedGoogle Scholar
  55. Pechenik JA, Cerulli T (1991) Influence of delayed metamorphosis on survival, growth, and reproduction of the marine polychaete Capitella sp. I. J Exp Mar Biol Ecol 151:17–27. doi: 10.1016/0022-0981(91)90012-L Google Scholar
  56. Pechenik JA, Eyster LS (1989) Influence of delayed metamorphosis on the growth and metabolism of young Crepidula fornicata (Gastropoda) juveniles. Biol Bull 176:14–24. doi: 10.2307/1541884 Google Scholar
  57. Pechenik JA, Fisher NS (1979) Ingestion and assimilation of three phytoplankton species related to larval growth rates of the mud snail, Nassarius obsoletus. J Exp Mar Biol Ecol 38:57–80Google Scholar
  58. Pechenik JA, Gee CC (1993) Onset of metamorphic competence in larvae of the gastropod Crepidula fornicata, judged by a natural and an artificial cue. J Exp Mar Biol Ecol 167:59–72Google Scholar
  59. Pechenik JA, Heyman WD (1987) Using KCl to determine size at competence for larvae of the marine gastropod Crepidula fornicata (L.). J Exp Mar Biol Ecol 112:27–38. doi: 10.1016/S0022-0981(87)80012-6 Google Scholar
  60. Pechenik JA, Rittschof D, Schmidt AR (1993) Influence of delayed metamorphosis on survival and growth of juvenile barnacles Balanus amphitrite. Mar Biol 115:287–294. doi: 10.1007/BF00346346 Google Scholar
  61. Pechenik JA, Estrella S, Hammer K (1996a) Food limitation stimulates metamorphosis and alters postmetamorphic growth rate in the marine prosobranch gastropod Crepidula fornicata. Mar Biol 127:267–275Google Scholar
  62. Pechenik JA, Hammer K, Weise C (1996b) The effect of starvation on acquisition of competence and postmetamorphic performance in the marine prosobranch gastropod Crepidula fornicata (L.). J Exp Mar Biol Ecol 199:137–152. doi: 10.1016/0022-0981(96)00010-X Google Scholar
  63. Pechenik JA, Hilbish TJ, Eyster LS, Marshall D (1996c) Relationship between larval and juvenile growth rates in two marine gastropods, Crepidula plana and C. fornicata. Mar Biol 125:119–127. doi: 10.1007/BF00350766 Google Scholar
  64. Pechenik JA, Gleason T, Daniels D, Champlin D (2001) Influence of larval exposure to salinity and cadmium stress on juvenile performance of two marine invertebrates (Capitella sp. I and Crepidula fornicata). J Exp Mar Biol Ecol 264:101–114. doi: 10.1016/S0022-0981(01)00313-6 Google Scholar
  65. Pechenik JA, Jarrett J, Rooney J (2002) Relationship between larval nutritional experience, larval growth rates, and juvenile growth rates in the prosobranch gastropod Crepidula fornicata. J Exp Mar Biol Ecol 280:63–78. doi: 10.1016/S0022-0981(02)00367-2 Google Scholar
  66. Pechenik JA, Ambrogio OV, Untersee S (2010) Predation on juveniles of Crepidula fornicata by two crustaceans and two gastropods. J Exp Mar Biol Ecol 384:91–98. doi: 10.1016/j.jembe.2009.12.011 Google Scholar
  67. Phillips NE (2002) Effects of nutrition-mediated larval condition on juvenile performance in a marine mussel. Ecology 83:2562–2572Google Scholar
  68. Pires A, Guilbault TR, Mitten JV, Skiendzielewski JA (2000) Catecholamines in larvae and juveniles of the prosobranch gastropod, Crepidula fornicata. Comp Biochem Physiol C 127:37–47. doi: 10.1016/S0742-8413(00)00128-6 Google Scholar
  69. Relyea RA, Hoverman JT (2003) The impact of larval predators and competitors on the morphology and fitness of juvenile treefrogs. Oecologia 134:596–604. doi: 10.1007/s00442-002-1161-8 PubMedGoogle Scholar
  70. Ritchie H, Marshall DJ (2013) Fertilisation is not a new beginning: sperm environment affects offspring developmental success. J Exp Biol 216:3104–3109. doi: 10.1242/jeb.087221 PubMedGoogle Scholar
  71. Rossoll D, Bermúdez R, Hauss H, Schulz KG, Riebesell U, Sommer U, Winder M (2012) Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 7:e34737. doi: 10.1371/journal.pone.0034737 PubMedPubMedCentralGoogle Scholar
  72. Rumrill SS (1990) Natural mortality of marine invertebrate larvae. Ophelia 32:163–198. doi: 10.1080/00785236.1990.10422030 Google Scholar
  73. Tejedo M, Marangoni F, Pertoldi C, Richter-Boix A, Laurila A, Orizaola G, Nicieza AG, Álvarez D, Gomez-Mestre I (2010) Contrasting effects of environmental factors during larval stage on morphological plasticity in post-metamorphic frogs. Clim Res 43:31–39. doi: 10.3354/cr00878 Google Scholar
  74. Thiyagarajan V, Qian PY (2003) Effect of temperature, salinity and delayed attachment on development of the solitary ascidian Styela plicata (Lesueur). J Exp Mar Biol Ecol 290:133–146. doi: 10.1016/S0022-0981(03)00071-6 Google Scholar
  75. Thiyagarajan V, Pechenik JA, Gosselin LA, Qian PY (2007) Juvenile growth in barnacles: combined effect of delayed metamorphosis and sub-lethal exposure of cyprids to low-salinity stress. Mar Ecol Prog Ser 344:173–184. doi: 10.3354/meps06931 Google Scholar
  76. Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:1–45. doi: 10.1111/j.1469-185X.1950.tb00585.x PubMedGoogle Scholar
  77. Tortell PD, DiTullio GR, Sigman DM, Morel FMM (2002) CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Mar Ecol Prog Ser 236:37–43. doi: 10.3354/meps236037 Google Scholar
  78. Van Allen BG, Rudolf VHW (2013) Ghosts of habitats past: environmental carry-over effects drive population dynamics in novel habitat. Am Nat 181:596–608. doi: 10.1086/670127 PubMedGoogle Scholar
  79. Vaugn D, Allen JD (2010) The peril of the plankton. Integr Comp Biol 50:552–570. doi: 10.1093/icb/icq037 Google Scholar
  80. Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240. doi: 10.1016/0022-0981(89)90029-4 Google Scholar
  81. Wendt DE (1998) Effect of larval swimming duration on growth and reproduction of Bugula neritina (Bryozoa) under field conditions. Biol Bull 195:126–135. doi: 10.2307/1542820 PubMedGoogle Scholar
  82. Wu C-S, Gomez-Mestre I, Kam Y-C (2012) Irreversibility of a bad start: early exposure to osmotic stress limits growth and adaptive developmental plasticity. Oecologia 169:15–22. doi: 10.1007/s00442-011-2170-2 PubMedGoogle Scholar
  83. Wynne-Edwards C, King R, Davidson A, Wright S, Nichols PD, Wotherspoon S, Kawaguchi S, Virtue P (2014) Species-specific variations in the nutritional quality of southern ocean phytoplankton in response to elevated pCO2. Water 6:1840–1859Google Scholar
  84. Yoshioka M, Yago T, Yoshie-Stark Y, Arakawa H (2012) Effect of high frequency of intermittent light on the growth and fatty acid profile of Isochrysis galbana. Aquaculture 338–341:111–117. doi: 10.1016/j.aquaculture.2012.01.005 Google Scholar
  85. Zimmerman KM, Pechenik JA (1991) How do temperature and salinity affect relative rates of growth, morphological differentiation, and time to metamorphic competence in larvae of the marine gastropod Crepidula plana? Biol Bull 180:372–386PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Biology DepartmentTufts University MedfordMedfordUSA
  2. 2.The School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookUSA

Personalised recommendations