Advertisement

Marine Biology

, Volume 162, Issue 8, pp 1531–1540 | Cite as

Growth and longevity of Lithophaga lithophaga: what can we learn from shell structure and stable isotope composition?

  • Melita Peharda
  • Sanja Puljas
  • Laurent Chauvaud
  • Bernd R. Schöne
  • Daria Ezgeta-Balić
  • Julien Thébault
Original Paper

Abstract

Longevity of bivalves has been an intriguing issue, especially for those species of interest for human consumption. Reliable age and growth estimates often require the combination of several methods. In this study, we analyzed changes in shell structure including ridges on the external shell surface and growth lines observed in acetate peel replicas of shell sections of the European date mussel Lithophaga lithophaga, as well as the oxygen and carbon isotope values (δ18O and δ13C) of the shell. High variations in growth rates between individuals were noted. Ontogenetic ages of analyzed shells varied from 10 to 54 years (30.6–93.6 mm). According to results of generalized von Bertalanffy growth function, L was 107.6 mm, and k was 0.03 year−1. δ18O results strongly suggest that growth ridges visible on the external shell surface of L. lithophaga are formed annually. The δ18O values ranged from −0.2 to 2.7 ‰ (\(\bar{x} = 1.15 \pm 0.72\) ‰), which equates to a temperature range of 13 °C. The reconstructed seawater temperatures (Tδ18Oshell) ranged between 12 and 25 °C, a range in good agreement with measured temperature. Stable carbon isotope values decreased through ontogeny and ranged between −2.05 and 2.32 ‰ (\(\bar{x} = 0.01 \pm 0.89\) ‰). Results of this study provide the first stable isotope data for L. lithophaga shells and show the potential of this species as a geochemical sclerochronological archive.

Keywords

Bivalve Growth Increment Growth Line Stable Isotope Data Macoma Balthica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was funded through Croatian-French Program “Cogito,” project “Lithophaga lithophaga (Bivalvia; Mytilidae), archive of environmental changes in the Mediterranean.” Dr Elizabeth Harper performed mineralogical analysis of the shell. Authors are grateful to Ivica Matijaca, Igor Isajlović, Toni Mašće and Clémence Royer for logistic help with sample collection. We thank Michael Maus for help with processing the samples and Dr Paul Butler for help with language editing.

Compliance with Ethical Standards

Sampling permits were obtained from all relevant Institutions in Croatia. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. All authors approved the final version of the manuscript and consent to submit has been received from all co-authors and institutions.

References

  1. Abele D, Brey T, Philipp E (2009) Bivalve models of aging and the determination of molluscan lifespans. Exp Gerontol 44:307–315. doi: 10.1016/j.exger.2009.02.012 CrossRefGoogle Scholar
  2. Bagur M, Richardson CA, Gutiérrez JL, Arribas LP, Doldan MS, Palomo MG (2013) Age, growth and mortality in four populations of the boring bivalve Lithophaga patagonica from Argentina. J Sea Res 81:49–56. doi: 10.1016/j.seares.2013.04.003 CrossRefGoogle Scholar
  3. Bayne BL (2004) Phenotypic flexibility and physiological tradeoffs in the feeding and growth of marine bivalve molluscs. Integr Comp Biol 44:425–432. doi: 10.1093/icb/44.6.425 CrossRefGoogle Scholar
  4. Brey T (2001) Population dynamics in benthic invertebrates: a virtual handbook (version 1.2). Alfred Wegener Institute for Polar and Marine Research, Germany. http://www.thomas-brey.de/science/virtualhandbook/. Last Accessed 30 Dec 2014
  5. Brocas WM, Reynolds DJ, Butler PG, Richardson CA, Scourse JD, Ridgway ID, Ramsay K (2013) The dog cockle, Glycymeris glycymeris (L.), a new annually-resolved sclerochronological archive for the Irish Sea. Palaeogeogr Palaeoclimatol Palaeoecol 373:133–140. doi: 10.1016/j.palaeo.2012.03.030 CrossRefGoogle Scholar
  6. Bušelić I, Peharda M, Reynolds DJ, Butler PG, Gonzalez AR, Ezgeta-Balić D, Vilibić I, Grbec B, Hollyman P, Richardson CA (2015) Glycymeris bimaculata (Poli, 1795)—a new sclerochronological archive for the Mediterranean. J Sea Res 95:139–148. doi: 10.1016/j.seares.2014.07.011 CrossRefGoogle Scholar
  7. Butler PG, Richardson CA, Scourse JD, Wanamaker AD, Shammon TM, Bennell JD (2010) Marine climate in the Irish Sea: an analysis of a 489-year marine master chronology derived from growth increments in the shell of the clam Arctica islandica. Quat Sci Rev 29(13–14):1614–1632. doi: 10.1016/j.quascirev.2009.07.010 CrossRefGoogle Scholar
  8. Butler PG, Wanamaker AD, Scourse JD, Richardson CA, Reynolds DJ (2011) Long-term stability of δ13C with respect to biological age in the aragonite shell of mature specimens of the bivalve mollusk Arctica islandica. Palaeogeogr Palaeoclimatol Palaeoecol 302:21–30. doi: 10.1016/j.palaeo.2010.03.038 CrossRefGoogle Scholar
  9. Butler PG, Wanamaker AD, Scourse JD, Richardson CA, Reynolds DJ (2013) Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeogr Palaeoclimatol Palaeoecol 373:141–151. doi: 10.1016/j.palaeo.2012.01.016 CrossRefGoogle Scholar
  10. Cardoso JFMF, Santos S, Witte JIJ, Witbaard R, van der Veer HW, Machado JP (2013a) Validation of the seasonality in growth lines in the shell of Macoma balthica using stable isotopes and trace elements. J Sea Res 82:93–102. doi: 10.1016/j.seares.2012.09.006 CrossRefGoogle Scholar
  11. Cardoso JFMF, Nieuwland G, Witbaards R, van der Veer HW, Machado JP (2013b) Growth increments periodicity in the shell of the razor clam Ensis directus using stable isotopes as a method to validate age. Biogeosciences 10:4741–4750. doi: 10.5194/bg-10-4741-2013 CrossRefGoogle Scholar
  12. Deudero S, Box A, March D, Valencia JM, Grau AM, Tintore J, Calvo M, Caixach J (2007) Organic compounds temporal trends at some invertebrate species from the Balearics, western Mediterranean. Chemosphere 68:1650–1659. doi: 10.1016/j.chemosphere.2007.03.070 CrossRefGoogle Scholar
  13. Devescovi M, Ozretić B, Iveša L (2005) Impact of date mussel harvesting on the rocky bottom structural complexity along the Istrian coast (Northern Adriatic, Croatia). J Exp Mar Biol Ecol 325:134–145. doi: 10.1016/j.jembe.2005.04.028 CrossRefGoogle Scholar
  14. Dujmov J, Sučević P (1990) The contamination of date shell (Lithophaga lithophaga) from the eastern coast of the Adriatic Sea by polycyclic aromatic hydrocarbons. Acta Adriat 31:153–161Google Scholar
  15. Epstein S, Buchsbaum R, Lowenstram Urey HC (1953) Revisited carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326CrossRefGoogle Scholar
  16. Fanelli G, Piraino S, Belmonte G, Geraco S, Boero F (1994) Human predation along Apulian rocky coasts (SE Italy): desertification caused by Lithophaga lithophaga (Mollusca) fisheries. Mar Ecol Prog Ser 110:1–8CrossRefGoogle Scholar
  17. Fisher W, Bauchot ML, Schneider M (eds) (1987) Fiches DAO d’identification des espèces pour les besoins de la pêche (Révision 1). Méditerranée et Mer Noire, Zone de Pêche 37, vol 1, Végétaux et invertébrés. FAO, RomeGoogle Scholar
  18. Foster LC, Allison N, Finch AA, Andersson C, Ninnemann US (2009) Controls on delta O-18 and delta C-13 profiles within the aragonite bivalve Arctica islandica. Holocene 19(4):549–558. doi: 10.1177/0959683609104028 CrossRefGoogle Scholar
  19. Galinou-Mitsoudi S, Sinis AI (1994) Reproductive cycle and fecundity of the date mussel Lithophaga lithophaga (Bivalvia: Mytilidae). J Molluscan Stud 60:371–385. doi: 10.1093/mollus/60.4.371 CrossRefGoogle Scholar
  20. Galinou-Mitsoudi S, Sinis AI (1995) Age and growth of Lithophaga lithophaga (Linnaeus, 1758) (Bivalvia: Mytilidae), based on annual growth lines in the shell. J Molluscan Stud 61:435–453. doi: 10.1093/mollus/61.4.435 CrossRefGoogle Scholar
  21. Galinou-Mitsoudi S, Sinis AI (1997) Ontogenesis and settlements of the date mussel Lithophaga lithophaga (L., 1758) (Bivalvia: Mytilidae). Isr J Zool 43:167–183. doi: 10.1080/00212210.1997.10688901 Google Scholar
  22. Goman M, Ingram BL, Strom A (2008) Composition of stable isotopes in geoduck (Panopea abrupta) shells: a preliminary assessment of annual and seasonal paleoceanographic changes in the northeast Pacific. Quat Int 188:117–125. doi: 10.1016/j.quaint.2007.06.038 CrossRefGoogle Scholar
  23. Goodwin DH, Gillikin DP, Roopnarine PD (2013) Preliminary evaluation of potential stable isotope and trace element productivity proxies in the oyster Crassostrea gigas. Palaeogeogr Palaeoclimatol Palaeoecol 373:88–97. doi: 10.1016/j.palaeo.2012.03.034 CrossRefGoogle Scholar
  24. Gosling E (2003) Bivalve molluscs: biology, ecology and culture, 1st edn. Fishing News Books, OxfordCrossRefGoogle Scholar
  25. Guidetti P (2011) The destructive date-mussel fishery and the persistence of barrens in Mediterranean rocky reefs. Mar Pollut Bull 62(4):691–695. doi: 10.1016/j.marpolbul.2011.01.029 CrossRefGoogle Scholar
  26. Haszprunar G, Wanninger A (2012) Molluscs. Curr Biol 22(13):R510–R514. doi: 10.1016/j.cub.2012.05.039 CrossRefGoogle Scholar
  27. Hernández-Otero A, Martinez-Castro C, Vázquez E, Macho G (2014) Reproductive cycle of Ensis magnus in the Ria de Pontevedra (NW Spain): spatial variability and fisheries management implications. J Sea Res 91(45–57):45–57. doi: 10.1016/j.seares.2014.04.008 CrossRefGoogle Scholar
  28. Jaafar Kefi F, Lahbib Y, Gargouri Ben Abdallah L, Trigui El Menif N (2012a) Shell disturbances and butyltins burden in commercial bivalves collected from the Bizerta lagoon (northern Tunisia). Environ Monit Assess 184:6869–6876. doi: 10.1007/s10661-011-2464-1 CrossRefGoogle Scholar
  29. Jaafar Kefi F, Abdallah B, Gargouri L, Trigui El-Menif N, Mraouna R, El Bour M (2012b) Health status of the date mussel Lithophaga lithophaga (Linne, 1758) from the North of Tunisia. Cah Biol Mar 53(2):177–184Google Scholar
  30. Jaafar Kefi F, Boubaker S, Trigui El Menif NT (2014) Relative growth and reproductive cycle of the date mussel Lithophaga lithophaga (Linnaeus, 1758) sampled from the Bizerte Bay (Northern Tunisia). Helgol Mar Res 68:439–450. doi: 10.1007/s10152-014-0400-9 CrossRefGoogle Scholar
  31. Kleemann KH (1973a) Der Gesteinsabbau durch Ätzmuscheln an Kalkküsten. Oecologia 13:377–395. doi: 10.1007/BF01825527 CrossRefGoogle Scholar
  32. Kleemann KH (1973b) Lithophaga lithophaga (L.) (Bivalvia) in different limestone. Malacologia 14:345–347Google Scholar
  33. Lorrain A, Paulet Y-M, Chauvaud L, Dunbar R, Mucciarone D, Fontugne M (2004) δ13C variations in scallop shells: increasing metabolic carbon contribution with body size? Geochim Cosmochim Acta 68:3509–3519. doi: 10.1016/j.gca.2004.01.025 CrossRefGoogle Scholar
  34. McConnaughey TA, Gillikin DP (2008) Carbon isotopes in mollusk shell carbonates. Geo-Mar Lett 28:287–299. doi: 10.1007/s00367-008-0116-4 CrossRefGoogle Scholar
  35. Morton B, Scott PJB (1980) Morphological and functional specializations of the shell, musculature and pallial glands in the Lithophaginae (Mollusca: Bivalvia). J Zool Lond 192:179–203. doi: 10.1111/j.1469-7998.1980.tb04229.x CrossRefGoogle Scholar
  36. Parravicini V, Trush SF, Chiantore M, Mori C, Croci C, Bianchi CN (2010) The legacy of past disturbance: chronic angling impairs long-term recovery of marine epibenthic communities from acute date-mussel harvesting. Biol Conserv 143(11):2435–2440. doi: 10.1016/j.biocon.2010.06.006 CrossRefGoogle Scholar
  37. Pauly D, Munro JL (1984) Once more on the comparison of growth in fish and invertebrates. ICLARM Contribution 195:21Google Scholar
  38. Peharda M, Ezgeta-Balić D, Radman M, Sinjkević N, Vrgoč N, Isajlović I (2012) Age, growth and population structure of Acanthocardia tuberculata (Bivalvia: Cardiidae) in the eastern Adriatic Sea. Sci Mar 76(1):59–66. doi: 10.3989/scimar.03257.21A CrossRefGoogle Scholar
  39. Poppe GT, Goto Y (2000) European seashells (Scaphopoda, Bivalvia, Cephalopoda), vol II, 2nd edn. Conch Books, HackenheimGoogle Scholar
  40. Powell EN, Cummins H (1985) Are molluscan maximum life spans determined by long-term cycles in benthic communities. Oecologia 67(2):177–182. doi: 10.1007/BF00384281 CrossRefGoogle Scholar
  41. Richardson CA (2001) Molluscs as archives of environmental change. Oceanogr Mar Biol Annu Rev 39:103–164Google Scholar
  42. Richardson CA, Peharda M, Kennedy HA, Kennedy P, Onofri V (2004) Age, growth rate and season of recruitment of Pinna nobilis in the Croatian Adriatic determined from Mg: Ca and Sr: Ca shell profiles. J Exp Mar Biol Ecol 299(1):1–16. doi: 10.1016/j.jembe.2003.08.012 CrossRefGoogle Scholar
  43. Santos S, Cardoso JFMF, Borges V, Witbaards R, Luttikhuizen PC, van der Veer HW (2012) Isotopic fractionation between seawater and the shell of Scrobicularia plana (Bivalvia) and its application for age validation. Mar Biol 159(3):601–611. doi: 10.1007/s00227-011-1838-9 CrossRefGoogle Scholar
  44. Schöne BR (2013) Arctica islandica (Bivalvia): a unique paleoenvironmental archive of the northern North Atlantic Ocean. Glob Planet Change 111:199–225. doi: 10.1016/j.gloplacha.2013.09.013 CrossRefGoogle Scholar
  45. Schöne BR, Freyre Castro AD, Fiebig J, Houk SD, Oschmann W, Kröncke I (2004) Sea surface water temperatures over the period 1884–1983 reconstructed from oxygen isotope ratios of a bivalve mollusk shell (Arctica islandica, southern North Sea). Palaeogeogr Palaeoclimatol Palaeoecol 212:215–232. doi: 10.1016/j.palaeo.2004.05.024 CrossRefGoogle Scholar
  46. Schöne BR, Wanamaker AD, Fiebig J, Thébault J, Kreutz K (2011) Annually resolved δ13C shell chronologies of long-lived bivalve mollusks (Arctica islandica) reveal oceanic carbon dynamics in the temperate North Atlantic during recent centuries. Palaeogeogr Palaeoclimatol Palaeoecol 302:31–42. doi: 10.1016/j.palaeo.2010.02.002 CrossRefGoogle Scholar
  47. Sejr MK, Jensen KT, Rysgaard S (2002) Annual growth bands in the bivalve Hiatella arctica validated by a mark-recapture study in NE Greenland. Polar Biol 25(10):794–796. doi: 10.1007/s00300-002-0413-8 Google Scholar
  48. Sharp Z (2006) Principles of stable isotope geochemistry. Prentice Hall, New JerseyGoogle Scholar
  49. Šimunović A, Grubelić I, Tudor M, Hrs-Brenko M (1990) Sexual cycle and biometry of date shell, Lithophaga lithophaga L. (Mytilidae). Acta Adriat 31:139–151Google Scholar
  50. Stenni B, Nichetto P, Bregant D, Scarazzato P, Longinelli A (1995) The δ18O signal of the northward flow of Mediterranean waters in the Adriatic Sea. Oceanol Acta 18(3):319–328Google Scholar
  51. Thébault J, Chauvaud L, Clavier J, Guarini J, Dunbar RB, Fichez R, Mucciarone DA, Morize E (2007) Reconstruction of seasonal temperature variability in the tropical Pacific Ocean from the shell of the scallop, Comptopallium radula. Geochim Cosmochim Acta 71(4):918–928. doi: 10.1016/j.gca.2006.10.017 CrossRefGoogle Scholar
  52. Thébault J, Schöne BR, Hallmann N, Barth M, Nunn EV (2009) Investigation of Li/Ca variations in aragonitic shells of the ocean quahog Arctica islandica, northeast Iceland. Geochem Geophys Geosyst 10:Q12008. doi: 10.1029/2009GC002789 CrossRefGoogle Scholar
  53. Valli G, Nodari P, Sponza R (1986) Allevamento sperimentale di Lithophaga lithophaga (L.) (Bivalvia, Mytilicea) e studio del ciclo riproducttivo nel Golfo di Trieste. Nova Thalassia 8:1–13Google Scholar
  54. van der Geest M, van Gils JA, van der Meer J, Olff H, Piersma T (2011) Suitability of calcein as an in situ growth marker in burrowing bivalves. J Exp Mar Biol Ecol 399(1):1–7. doi: 10.1016/j.jembe.2011.01.003 CrossRefGoogle Scholar
  55. Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248. doi: 10.1016/0025-3227(91)90234-U CrossRefGoogle Scholar
  56. Wisshak M, LópezCorrea M, Gofas S, Salas C, Taviani M, Jakobsen J, Freiwald A (2009) Shell architecture, element composition, and stable isotope signature of the giant deep-sea oyster Neopycnodonte zibrowii sp n. from the NE Atlantic. Deep-Sea Res Part I 56(3):374–407. doi: 10.1016/j.dsr.2008.10.002 CrossRefGoogle Scholar
  57. Yan L, Schöne BR, Arkhipkin A (2012) Eurhomalea exalbida (Bivalvia): a reliable recorder of climate in southern South America? Palaeogeogr Palaeoclimatol Palaeoecol 350:91–100. doi: 10.1016/j.palaeo.2012.06.01 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Melita Peharda
    • 1
  • Sanja Puljas
    • 2
  • Laurent Chauvaud
    • 3
  • Bernd R. Schöne
    • 4
  • Daria Ezgeta-Balić
    • 1
  • Julien Thébault
    • 3
  1. 1.Institute of Oceanography and FisheriesSplitCroatia
  2. 2.Faculty of ScienceUniversity of SplitSplitCroatia
  3. 3.Laboratoire des Sciences de l’Environnement Marin (LEMAR UMR6539 UBO/CNRS/IRD), Institut Universitaire Européen de la MerUniversité de BrestPlouzanéFrance
  4. 4.Earth System Science Research Center, Institute of GeosciencesUniversity of MainzMainzGermany

Personalised recommendations