Marine Biology

, Volume 158, Issue 11, pp 2449–2458 | Cite as

Dispersal potential of invasive algae: the determinants of buoyancy in Codium fragile ssp. fragile

  • Karine Gagnon
  • Christopher W. McKindsey
  • Ladd E. JohnsonEmail author
Original Paper


The capacity for long-distance dispersal is an important factor in determining the spread of invasive species. For algae, positive buoyancy generally is correlated with increased dispersal potential, and the light environment has been previously identified as a possible determinant of buoyancy in several species. We examined the effect of light intensity on the buoyancy of fragments of the invasive green alga Codium fragile ssp. fragile. Under natural and controlled conditions, the buoyancy of samples taken from the thallus tip was higher than those from near the holdfast. Both laboratory and field experiments also showed that buoyancy was dynamic and switched from positive to negative under reduced light intensity, but this change required several days. We also observed seasonal changes in buoyancy, presumably due to natural variations in light intensity, with the buoyancy of fragments washed up on the shore highest in mid-summer. These results show that buoyancy is a dynamic property of the C. fragile ssp. fragile thallus and suggest that buoyant fragments contribute to long-range dispersal and accelerated regional spread of this invader. This finding suggests that dispersal is more likely during conditions of high light intensity and illustrates the need to understand how variations in the natural environment can affect the dispersal potential of invasive species.


High Light Intensity Secondary Spread Negative Buoyancy Positive Buoyancy Fragment Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge and appreciate funding from the Canadian Aquatic Invasive Species Network (CAISN) of the Natural Sciences and Engineering Research Council (NSERC), an NSERC Discovery Grant (LEJ), a grant from the Fondation Communautaire Gaspèsie-Les-Îles (LEJ & CWM), and Québec-Océan. We thank B. Myrand, M. Nadeau, and the Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec (MAPAQ) for use of the laboratory facilities at Havre-aux-Maisons. Finally, we would like to thank A. Drouin, C. Chevrier-Turbide, O. Rhoades, G. Chevarie for assistance in the laboratory and the field, F. Gallien for technical laboratory assistance, the Service de Consultation Statistique at Université Laval for help with statistical analyses, and Martin Thiel and two anonymous reviewers for comments on an earlier version of this paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All experiments described in this paper comply with the laws of the country in which they were performed.


  1. Aleem AA (1969) Zonation, vesicle pressure and gas composition in Fucus vesiculosus and Ascophyllum nodosum at Kristineberg (west coast of Sweden). Mar Biol 4(1):36–43CrossRefGoogle Scholar
  2. Alfaro AC, Zemke-White WL, Nainoca W (2009) Faunal composition within algal mats and adjacent habitats on Likuri Island, Fiji Islands. J Mar Biol Assoc UK 89(2):295–302. doi: 10.1017/s0025315408002774 CrossRefGoogle Scholar
  3. Bäck S, Lehvo A, Blomster J (2000) Mass occurrence of unattached Enteromorpha intestinalis on the Finnish Baltic Sea coast. Ann Bot Fenn 37(3):155–161Google Scholar
  4. Bouck GB, Morgan E (1957) The occurence of Codium in Long Island waters. Bull Torrey Bot Club 84(5):384–387CrossRefGoogle Scholar
  5. Churchill AC, Moeller HW (1972) Seasonal patterns of reproduction in New York populations of Codium fragile (sur.) Hariot subsp. tomentosoides (van goor Silva). J Phycol 8(2):147CrossRefGoogle Scholar
  6. Collins CJ, Fraser CI, Ashcroft A, Waters JM (2010) Asymmetric dispersal of southern bull-kelp (Durvillaea antarctica) adults in coastal New Zealand: testing an oceanographic hypothesis. Mol Ecol 19(20):4572–4580. doi: 10.1111/j.1365-294X.2010.04842.x CrossRefGoogle Scholar
  7. Deysher L, Norton TA (1982) Dispersal and colonization in Sargassum muticum (Yendo) Fensholt. J Exp Mar Biol Ecol 56(2–3):179–195Google Scholar
  8. Dromgoole FI (1982) The buoyant properties of Codium. Bot Mar 15(8):391–397Google Scholar
  9. Drouin A, McKindsey CW, Johnson LE (2011) Higher abundance and diversity in faunal assemblages with the invasion of Codium fragile ssp. fragile in eelgrass meadows. Mar Ecol Prog Ser 424:105–117. doi: 10.3354/meps08961 CrossRefGoogle Scholar
  10. Fralick RA, Mathieson AC (1972) Winter fragmentation of Codium fragile (Suringar) Hariot ssp. tomentosoides (van Goor) Silva (Chlorophyceae, Siphonales) in New England. Phycologia 11(1):67–70CrossRefGoogle Scholar
  11. Fraser CI, Nikula R, Spencer HG, Waters JM (2009) Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proc Natl Acad Sci USA 106(9):3249–3253. doi: 10.1073/pnas.0810635106 CrossRefGoogle Scholar
  12. Gagnon K (2010) Dissémination et établissement de l’algue verte envahissante Codium fragile dans les herbiers marins. Université Laval, Québec, QCGoogle Scholar
  13. Garbary DJ, Vandermeulen H, Kim KY (1997) Codium fragile ssp. tomentosoides (Chlorophyta) invades the Gulf of St. Lawrence, Atlantic Canada. Bot Mar 40(6):537–540Google Scholar
  14. Garbary DJ, Fraser SJ, Hubbard CB, Kim KY (2004) Codium fragile: rhizomatous growth in the Zostera thief of eastern Canada. Helgol Mar Res 58(3):141–146. doi: 10.1007/s10152-004-0173-7 CrossRefGoogle Scholar
  15. Grosholz E (2002) Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17(1):22–27CrossRefGoogle Scholar
  16. Hall SR, Mills EL (2000) Exotic species in large lakes of the world. Aquat Ecosyst Health Manage 3(1):105–135CrossRefGoogle Scholar
  17. Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U, Melbourne BA, Moore K, Taylor C, Thomson D (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8(1):91–101. doi: 10.1111/j.1461-0248.2004.00687.x CrossRefGoogle Scholar
  18. Ho YB (1979) Inorganic mineral nutrient level studies on Potamogeton pectinatus L. and Enteromorpha prolifera in Forfar Loch, Scotland. Hydrobiologia 62(1):7–15CrossRefGoogle Scholar
  19. Inderjit Chapman D, Ranelletti M, Kaushik S (2006) Invasive marine algae: an ecological perspective. Bot Rev 72(2):153–178CrossRefGoogle Scholar
  20. Ingólfsson A (2000) Colonization of floating seaweed by pelagic and subtidal benthic animals in southwestern Iceland. Hydrobiologia 440(1–3):181–189CrossRefGoogle Scholar
  21. Jenkins PT (1996) Free trade and exotic species introductions. Conserv Biol 10(1):300–302CrossRefGoogle Scholar
  22. Johnson LE, Carlton JT (1996) Post-establishment spread in large-scale invasions: dispersal mechanisms of the zebra mussel Dreissena polymorpha. Ecology 77(6):1686–1690CrossRefGoogle Scholar
  23. Lyons DA, Scheibling RE (2009) Range expansion by invasive marine algae: rates and patterns of spread at a regional scale. Divers Distrib 15(5):762–775. doi: 10.1111/j.1472-4642.2009.00580.x CrossRefGoogle Scholar
  24. Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6(9):485–492. doi: 10.1890/070064 CrossRefGoogle Scholar
  25. Nanba N, Kado R, Ogawa H, Komuro Y (2002) Formation and growth of filamentous thalli from isolated utricles with medullary filaments of Codium fragile spongy thalli. Aquat Bot 73(3):255–264CrossRefGoogle Scholar
  26. Nikula R, Fraser CI, Spencer HG, Waters JM (2010) Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans. Mar Ecol Prog Ser 405:221–230. doi: 10.3354/meps08523 CrossRefGoogle Scholar
  27. Norton TA (1992) Dispersal by macroalgae. Br Phycol J 27(3):293–301CrossRefGoogle Scholar
  28. Norton TA, Mathieson AC (1983) The biology of unattached seaweeds. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 2. Elsevier, New York, pp 333–386Google Scholar
  29. Olafsson E, Ingólfsson A, Steinarsdottir MB (2001) Harpacticoid copepod communities of floating seaweed: controlling factors and implications for dispersal. Hydrobiologia 453(1–3):189–200CrossRefGoogle Scholar
  30. Prince JS, Trowbridge CD (2004) Reproduction in the green macroalga Codium (Chlorophyta): characterization of gametes. Bot Mar 47(6):461–470. doi: 10.1515/BOT.2004.062 CrossRefGoogle Scholar
  31. Santelices B (1990) Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr Mar Biol Annu Rev 28:177–276Google Scholar
  32. Scheibling RE, Melady RA (2008) Effect of water movement and substratum type on vegetative recruitment of the invasive green alga Codium fragile ssp. tomentosoides. Bot Mar 51(5):341–349. doi: 10.1515/BOT.2008.046 CrossRefGoogle Scholar
  33. Shanks AL, Grantham BA, Carr MH (2003) Propagule dispersal distance and the size and spacing of marine reserves. Ecol Appl 13(1):S159–S169CrossRefGoogle Scholar
  34. Shigesada N, Kawasaki K, Takeda Y (1995) Modeling stratified diffusion in biological invasions. Am Nat 146(2):229–251CrossRefGoogle Scholar
  35. Simard N, Paille N, McKindsey CW (2007) Codium fragile ssp. tomentosoides : revue de littérature et situation aux Îles-de-la-Madeleine. Rapp manus can sci halieut aquat 2786:vii + 40 pGoogle Scholar
  36. Stewart HL (2006) Ontogenetic changes in buoyancy, breaking strength, extensibility, and reproductive investment in a drifting macroalga Turbinaria ornata (Phaeophyta). J Phycol 42(1):43–50. doi: 10.1111/j.1529-8817.2006.00184.x CrossRefGoogle Scholar
  37. Thiel M, Gutow L (2005a) The ecology of rafting in the marine environment. I. The floating substrata. Oceanogr Mar Biol Annu Rev 42:181–263Google Scholar
  38. Thiel M, Gutow L (2005b) The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr Mar Biol Annu Rev 43:279–418Google Scholar
  39. Thiel M, Haye PA (2006) The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences. Oceanogr Mar Biol Annu Rev 44:323–429Google Scholar
  40. Trowbridge CD (1998) Ecology of the green macroalga Codium fragile (Suringar) Hariot 1889: invasive and non-invasive subspecies. Oceanogr Mar Biol Annu Rev 36:1–64Google Scholar
  41. Vandenhoek C (1987) The possible significance of long-range dispersal for the biogeography of seaweeds. Helgol Meersunters 41(3):261–272CrossRefGoogle Scholar
  42. Watanabe S, Scheibling RE, Metaxas A (2009) Dispersal potential of the invasive green alga Codium fragile ssp. fragile. J Exp Mar Biol Ecol 381(2):114–125. doi: 10.1016/j.jembe.2009.09.012 CrossRefGoogle Scholar
  43. West EJ, Bames PB, Wright JT, Davis AR (2007) Anchors aweigh: fragment generation of invasive Caulerpa taxifolia by boat anchors and its resistance to desiccation. Aquat Bot 87(3):196–202. doi: 10.1016/j.aquabot.2007.06.005 CrossRefGoogle Scholar
  44. West EJ, Davis AR, Barnes PB, Wright JT (2009) The role of recreational activities in creating fragments of invasive Caulerpa taxifolia. J Exp Mar Biol Ecol 376(1):17–25. doi: 10.1016/j.jembe.2009.05.015 CrossRefGoogle Scholar
  45. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48(8):607–615CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Karine Gagnon
    • 1
  • Christopher W. McKindsey
    • 2
  • Ladd E. Johnson
    • 1
    Email author
  1. 1.Département de biologieUniversité LavalQuébecCanada
  2. 2.Maurice Lamontagne Institute, Fisheries and Oceans CanadaMont-JoliCanada

Personalised recommendations